Covering number

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In mathematics, a covering number is the number of spherical balls of a given size needed to completely cover a given space, with possible overlaps. Two related concepts are the packing number, the number of disjoint balls that fit in a space, and the metric entropy, the number of points that fit in a space when constrained to lie at some fixed minimum distance apart.


Let (M, d) be a metric space, let K be a subset of M, and let r be a positive real number. Let Br(x) denote the ball of radius r centered at x. A subset C of M is an r-external covering of K if:


In other words, for every there exists such that .

If furthermore C is a subset of K, then it is an r-internal covering.

The external covering number of K, denoted , is the minimum cardinality of any external covering of K. The internal covering number, denoted , is the minimum cardinality of any internal covering.

A subset P of K is a packing if and the set is pairwise disjoint. The packing number of K, denoted , is the maximum cardinality of any packing of K.

A subset S of K is r-separated if each pair of points x and y in S satisfies d(x, y) ≥ r. The metric entropy of K, denoted , is the maximum cardinality of any r-separated subset of K.


1. The metric space is the real line . is a set of real numbers whose absolute value is at most . Then, there is an external covering of intervals of length , covering the interval . Hence:

2. The metric space is the Euclidean space with the Euclidean metric. is a set of vectors whose length (norm) is at most . If lies in a d-dimensional subspace of , then:[1]:337


3. The metric space is the space of real-valued functions, with the l-infinity metric. The covering number is the smallest number such that, there exist such that, for all there exists such that the supremum distance between and is at most . The above bound is not relevant since the space is -dimensional. However, when is a compact set, every covering of it has a finite sub-covering, so is finite.[2]:61


1. The internal and external covering numbers, the packing number, and the metric entropy are all closely related. The following chain of inequalities holds for any subset K of a metric space and any positive real number r.[3]

2. Each function except the internal covering number is non-increasing in r and non-decreasing in K. The internal covering number is monotone in r but not necessarily in K.

The following properties relate to covering numbers in the standard Euclidean space :[1]:338

3. If all vectors in are translated by a constant vector , then the covering number does not change.

4. If all vectors in are multiplied by a scalar , then:

for all :

5. If all vectors in are operated by a Lipschitz function with Lipschitz constant , then:

for all :

Application to machine learning[edit]

Let be a space of real-valued functions, with the l-infinity metric (see example 3 above). Suppose all functions in are bounded by a real constant . Then, the covering number can be used to bound the generalization error of learning functions from , relative to the squared loss:[2]:61

where and is the number of samples.

See also[edit]


  1. ^ a b Shalev-Shwartz, Shai; Ben-David, Shai (2014). Understanding Machine Learning - from Theory to Algorithms. Cambridge university press. ISBN 9781107057135.
  2. ^ a b Mohri, Mehryar; Rostamizadeh, Afshin; Talwalkar, Ameet (2012). Foundations of Machine Learning. USA, Massachusetts: MIT Press. ISBN 9780262018258.
  3. ^ Tao, Terrance. "Metric entropy analogues of sum set theory". Retrieved 2 June 2014.