Jump to content

Daniel Goldston

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by KolbertBot (talk | contribs) at 08:49, 26 January 2018 (Bot: HTTP→HTTPS (v481)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Daniel Goldston
Born (1954-01-04) January 4, 1954 (age 70)
NationalityAmerican
Alma materUC Berkeley
Known forGPY theorem in number theory
AwardsCole Prize (2014)
Scientific career
FieldsMathematics
InstitutionsSan Jose State University
Thesis Large differences between consecutive prime numbers  (1981)
Doctoral advisorRussell Lehman

Daniel Alan Goldston (born January 4, 1954 in Oakland, California) is an American mathematician who specializes in number theory. He is currently a professor of mathematics at San Jose State University.

Goldston is best known for the following result that he, János Pintz, and Cem Yıldırım proved in 2005:[1]

where denotes the nth prime number. In other words, for every , there exist infinitely many pairs of consecutive primes and which are closer to each other than the average distance between consecutive primes by a factor of , i.e., .

This result was originally reported in 2003 by Goldston and Yıldırım but was later retracted.[2][3] Then Pintz joined the team and they completed the proof in 2005.

In fact, if they assume the Elliott–Halberstam conjecture, then they can also show that primes within 16 of each other occur infinitely often, which is related to the twin prime conjecture.

See also

References

  1. ^ https://arxiv.org/abs/math/0508185
  2. ^ http://aimath.org/primegaps/
  3. ^ "Archived copy". Archived from the original on 2009-02-20. Retrieved 2009-03-31. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)CS1 maint: archived copy as title (link)