de Bruijn–Newman constant
The de Bruijn–Newman constant, denoted by and named after Nicolaas Govert de Bruijn and Charles Michael Newman, is a mathematical constant defined via the zeros of a certain function , where is a real parameter and is a complex variable. More precisely,
- ,
where is the super-exponentially decaying function
and is the unique real number with the property that has only real zeros if and only if .
The constant is closely connected with Riemann hypothesis. Indeed, the Riemann hypothesis is equivalent to the conjecture that .[1] Brad Rodgers and Terence Tao proved that , so the Riemann hypothesis is equivalent to .[2] A simplified proof of the Rodgers–Tao result was later given by Alexander Dobner.[3]
History
[edit]De Bruijn showed in 1950 that has only real zeros if , and moreover, that if has only real zeros for some , also has only real zeros if is replaced by any larger value.[4] Newman proved in 1976 the existence of a constant for which the "if and only if" claim holds; and this then implies that is unique. Newman also conjectured that ,[5] which was proven forty years later, by Brad Rodgers and Terence Tao in 2018.
Upper bounds
[edit]De Bruijn's upper bound of was not improved until 2008, when Ki, Kim and Lee proved , making the inequality strict.[6]
In December 2018, the 15th Polymath project improved the bound to .[7][8][9] A manuscript of the Polymath work was submitted to arXiv in late April 2019,[10] and was published in the journal Research In the Mathematical Sciences in August 2019.[11]
This bound was further slightly improved in April 2020 by Platt and Trudgian to .[12]
Historical bounds
[edit]Year | Lower bound on Λ | Authors |
---|---|---|
1987 | −50[13] | Csordas, G.; Norfolk, T. S.; Varga, R. S. |
1990 | −5[14] | te Riele, H. J. J. |
1991 | −0.0991[15] | Csordas, G.; Ruttan, A.; Varga, R. S. |
1993 | −5.895×10−9[16] | Csordas, G.; Odlyzko, A.M.; Smith, W.; Varga, R.S. |
2000 | −2.7×10−9[17] | Odlyzko, A.M. |
2011 | −1.1×10−11[18] | Saouter, Yannick; Gourdon, Xavier; Demichel, Patrick |
2018 | 0[2] | Rodgers, Brad; Tao, Terence |
Year | Upper bound on Λ | Authors |
---|---|---|
1950 | ≤ 1/2[4] | de Bruijn, N.G. |
2008 | < 1/2[6] | Ki, H.; Kim, Y-O.; Lee, J. |
2019 | ≤ 0.22[7] | Polymath, D.H.J. |
2020 | ≤ 0.2[12] | Platt, D.; Trudgian, T. |
References
[edit]- ^ "The De Bruijn-Newman constant is non-negative". 19 January 2018. Retrieved 2018-01-19. (announcement post)
- ^ a b Rodgers, Brad; Tao, Terence (2020). "The de Bruijn–Newman Constant is Non-Negative". Forum of Mathematics, Pi. 8: e6. arXiv:1801.05914. doi:10.1017/fmp.2020.6. ISSN 2050-5086.
- ^ Dobner, Alexander (2020). "A New Proof of Newman's Conjecture and a Generalization". arXiv:2005.05142 [math.NT].
- ^ a b de Bruijn, N.G. (1950). "The Roots of Triginometric Integrals" (PDF). Duke Math. J. 17 (3): 197–226. doi:10.1215/s0012-7094-50-01720-0. Zbl 0038.23302.
- ^ Newman, C.M. (1976). "Fourier Transforms with only Real Zeros". Proc. Amer. Math. Soc. 61 (2): 245–251. doi:10.1090/s0002-9939-1976-0434982-5. Zbl 0342.42007.
- ^ a b Ki, Haseo; Kim, Young-One; Lee, Jungseob (2009), "On the de Bruijn–Newman constant" (PDF), Advances in Mathematics, 222 (1): 281–306, doi:10.1016/j.aim.2009.04.003, ISSN 0001-8708, MR 2531375 (discussion).
- ^ a b D.H.J. Polymath (20 December 2018), Effective approximation of heat flow evolution of the Riemann -function, and an upper bound for the de Bruijn-Newman constant (PDF) (preprint), retrieved 23 December 2018
- ^ Going below , 4 May 2018
- ^ Zero-free regions
- ^ Polymath, D.H.J. (2019). "Effective approximation of heat flow evolution of the Riemann ξ function, and a new upper bound for the de Bruijn-Newman constant". arXiv:1904.12438 [math.NT].(preprint)
- ^ Polymath, D.H.J. (2019), "Effective approximation of heat flow evolution of the Riemann ξ function, and a new upper bound for the de Bruijn-Newman constant", Research in the Mathematical Sciences, 6 (3), arXiv:1904.12438, Bibcode:2019arXiv190412438P, doi:10.1007/s40687-019-0193-1, S2CID 139107960
- ^ a b Platt, Dave; Trudgian, Tim (2021). "The Riemann hypothesis is true up to 3·1012". Bulletin of the London Mathematical Society. 53 (3): 792–797. arXiv:2004.09765. doi:10.1112/blms.12460. S2CID 234355998.(preprint)
- ^ Csordas, G.; Norfolk, T. S.; Varga, R. S. (1987-09-01). "A low bound for the de Bruijn-newman constant Λ". Numerische Mathematik. 52 (5): 483–497. doi:10.1007/BF01400887. ISSN 0945-3245. S2CID 124008641.
- ^ te Riele, H. J. J. (1990-12-01). "A new lower bound for the de Bruijn-Newman constant". Numerische Mathematik. 58 (1): 661–667. doi:10.1007/BF01385647. ISSN 0945-3245.
- ^ Csordas, G.; Ruttan, A.; Varga, R. S. (1991-06-01). "The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis". Numerical Algorithms. 1 (2): 305–329. Bibcode:1991NuAlg...1..305C. doi:10.1007/BF02142328. ISSN 1572-9265. S2CID 22606966.
- ^ Csordas, G.; Odlyzko, A.M.; Smith, W.; Varga, R.S. (1993). "A new Lehmer pair of zeros and a new lower bound for the De Bruijn–Newman constant Lambda" (PDF). Electronic Transactions on Numerical Analysis. 1: 104–111. Zbl 0807.11059. Retrieved June 1, 2012.
- ^ Odlyzko, A.M. (2000). "An improved bound for the de Bruijn–Newman constant". Numerical Algorithms. 25 (1): 293–303. Bibcode:2000NuAlg..25..293O. doi:10.1023/A:1016677511798. S2CID 5824729. Zbl 0967.11034.
- ^ Saouter, Yannick; Gourdon, Xavier; Demichel, Patrick (2011). "An improved lower bound for the de Bruijn–Newman constant". Mathematics of Computation. 80 (276): 2281–2287. doi:10.1090/S0025-5718-2011-02472-5. MR 2813360.