Jump to content

Dualizing sheaf

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Michael Hardy (talk | contribs) at 17:26, 11 July 2018. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In algebraic geometry, the dualizing sheaf on a proper scheme X of dimension n over a field k is a coherent sheaf together with a linear functional

that induces a natural isomorphism of vector spaces

for each coherent sheaf F on X (the superscript * refers to a dual vector space).[1] The linear functional is called a trace morphism.

A pair , if it is exists, is unique up to a natural isomorphism. In fact, in the language of category theory, is an object representing the contravariant functor from the category of coherent sheaves on X to the category of k-vector spaces.

For a normal projective variety X, the dualizing sheaf exists and it is in fact the canonical sheaf: where is a canonical divisor. More generally, the dualuzing sheaf exists for any projective scheme.

There is the following variant of Serre's duality theorem: for a projective scheme X of pure dimension n and a Cohen–Macaulay sheaf F on X such that is of pure dimension n, there is a natural isomorphism[2]

.

In particular, if X itself is a Cohen–Macaulay scheme, then the above duality holds for any locally free sheaf.

See also

References

  1. ^ Hartshorne, Ch. III, § 7.
  2. ^ Kollár–Mori, Theorem 5.71.
  • Kleiman, Steven L. Relative duality for quasicoherent sheaves. Compositio Math. 41 (1980), no. 1, 39–60.
  • Kollár, János; Mori, Shigefumi (1998), Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, ISBN 978-0-521-63277-5, MR 1658959
  • Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157