Jump to content

Eitan Zemel

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Postcard Cathy (talk | contribs) at 03:41, 11 November 2015 (removed Category:New York University faculty; added Category:New York University Stern School of Business faculty using HotCat). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Eitan Zemel is the Vice Dean for Strategic Initiatives and the W. Edwards Deming Professor of Quality and Productivity at New York University's Stern School of Business. He also teaches courses in operations management and operations strategy at NYU.[1] Professor Zemel also teaches for the Master of Science in Business Analytics Program for Executives (MSBA), which is jointly hosted by NYU Stern and NYU Shanghai.[2]

Academic interests

Zemel's research is focused on computations and algorithms. He developed the concepts used in the first practical algorithm for solving large knapsack problems and which are used in almost every efficient algorithm for this type of problem.[1]

Other areas of Zemel's research include supply chain management, operations strategy, service operations, and incentive issues in operations management. His writing has appeared in numerous publications including The SIAM Journal on Applied Mathematics, Operations Research, Games and Economic Behavior, and Annals of Operations Research.[1]

Zemel is also an associate editor of Manufacturing Review, Production and Operations Management, and Management Science, and the senior editor of Manufacturing and Service Operations.[1]

Books

  • Anupindi, R., S. Chopra, S. Deshmukh, Y. Van Mieghem, and E. Zemel (1996). Managing Business Flows. New Jersey: Prentice Hall. ISBN 978-0-13-067546-0.{{cite book}}: CS1 maint: multiple names: authors list (link)

Publications

Eitan Zemel is a co-author of over 40 articles.[3]

  • Balas, E., R. Naus and E. Zemel (1987). A Comment on Some Computational Results on Real 0-1 Knapsack Problems. Vol. 6. Operations Research Letters. pp. 139–141.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Balas, E. and E. Zemel (1980). An Algorithm for Large Zero-One Knapsack Problems. Vol. 28. Operations Research. pp. 1130–1154.
  • Balas, E. and E. Zemel (1978). Facets of the Knapsack Polytope from Minimal Covers. Vol. 34. SIAM Journal on Applied Mathematics. pp. 119–148.
  • Balas, E. and E. Zemel (1977). Graph Substitution and Set Packing Polytopes. Vol. 7. Networks. pp. 267–284.
  • Balas, E. and E. Zemel (1984). Lifting and Complementing Yields All the Facets of Positive Zero-One Polytopes. Amsterdam: in: R. W. Cottle, H. L. Kelmanson, and B. Korte (eds.); Mathematical Programming. pp. 13–34.
  • Bassok, Y., R. Anupindi, and E. Zemel (2001). A General Framework for the Study of Decentralized Distribution Systems. Vol. 3, No 4. MSOR. pp. 349–368.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Chen, Ying-Ju, S. Seshardi, and E. Zemel (March–April 2008). Sourcing Through Auctions and Audits. Production and Operations Management. pp. 1–18.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Drezner, Z. and E. Zemel (1992). Competitive Location in the Plane. Annals of Operations Research.
  • Gilboa, I., E. Kalai, and E. Zemel (1993). On the Computation Complexity of Eliminating Dominated Strategies. Vol. 18. Math. of O.R. pp. 553–565.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Gilboa, I., E. Kalai, and E. Zemel (1990). On the Order of Eliminating Dominated Strategies. Vol. 9. Operations Research Letters. pp. 85–89.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Gilboa, I. and E. Zemel (1989). Nash and Correlated Equilibria: Some Complexity Results. Vol. 1. Games and Economic Behavior. pp. 80–93.
  • Hakimi, L., N. Megiddo, and E. Zemel (1983). The Maximum Coverage Location Problem. Vol. 4. SIAM Journal on Discrete and Algebraic Methods. pp. 253–261.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Hartvigsen, D. and E. Zemel (1992). On the Computational Complexity of Facets and Valid Inequalities for the Knapsack Problem. Vol. 39. Discrete Applied Math. pp. 113–123.
  • Hassin, R. and E. Zemel (1984). On Shortest Paths in Graphs with Random Weights. Vol. 10. Mathematics of Operations Research. pp. 557–564.
  • Hassin, R. and E. Zemel (1988). Probabilistic Analysis of the Capacitated Transportation Problem. Vol. 13. Mathematics of Operations Research. pp. 80–90.
  • Kalai, E. and E. Zemel (198-). Generalized Network Problems Yielding Totally Balanced Games. Vol. 30. Operations Research. pp. 998–1008. {{cite book}}: Check date values in: |year= (help)CS1 maint: year (link)
  • Kalai, E. and E. Zemel (1982). On Totally Balanced Games and Games of Flow. Vol. 7. Mathematics of Operations Research. pp. 476–478.
  • Kamien, M. and E. Zemel (1994). Tangled Webs: A Note on the Complexity of Compound Lying. Northwestern University.
  • Kuno, T., H. Konno and E. Zemel (1991). A Linear Time Algorithm for Solving Continuous Maximin Knapsack Problems. Vol. 10. O.R. Letters. pp. 23, 27.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Megiddo, N., A. Tamir, E. Zemel, and R. Chandrasekaran (1981). An (n log2 n) Algorithm for the kth Longest Path in a Tree with Applications to Location Problems. Vol. 13. SIAM Journal on Computing. pp. 328–338.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Megiddo, N. and E. Zemel (1986). An O(n log n) Randomized Algorithm for the Weighted Euclidean One Center Problem in the Plane. Vol. 7. Journal of Algorithms. pp. 358–368.
  • Mitchelle, A. A., T. E. Morton and E. Zemel (1981). A Discrete Maximum Principle Approach to General Advertising Expenditure Model. Amsterdam: TIMS Studies in Management Science: Marketing, Planning Models (A. Zoltners, ed.); North-Holland Publishing.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Ocana, C. and E. Zemel (1996). Learning from Mistakes: The JIT Principle. Vol. 49. Operations Research. pp. 206–215.
  • Raviv, A. and E. Zemel (1977). Durability of Capital Goods: Market Structure and Taxes. Vol. 45. Econometrica. pp. 703–717.
  • Samet, D. and E. Zemel (1984). On the Core and Dual Set of Linear Programming Games. Vol. 9. Mathematics of Operations Research. pp. 309–316.
  • Sheopuri, A. and E. Zemel (2008). The Greed and Regret Problem INFORMS doi 10.1287/xxxx.0000.0000 c ○ 0000 INFORMS.
  • Tamir, A. and E. Zemel (1982). Locating Centers on a Tree with Discontinuous Supply and Demand Regions. Vol. 7. Mathematics of Operations Research. pp. 183–198.
  • Woodruff, D. and E. Zemel (1993). Hashing Vectors for Tabu Search. Vol. 41. Annals of O.R. pp. 123–137.
  • Zemel, E. (1989). Easily Computable Facets of the Knapsack Problem. Vol. 14. Mathematics of Operations Research. pp. 760–774.
  • Zemel, E. (1978). Lifting the Facets of O-1 Polytopes. Vol. 15. Mathematical Programming. pp. 268–277.
  • Zemel, E. (1987). A Linear Time Randomizing Algorithm for Searching Ranked Functions. Vol. 2. Algorithmica. pp. 81–90.
  • Zemel, E. (1981). Measuring the Quality of Approximate Solutions to Zero-One Programming Problems. Vol. 13. Mathematics of Operations Research. pp. 319–332.
  • Zemel, E. (1984). An O(n) Algorithm for the Multiple Choice Knapsack and Related Problems. Vol. 18. Information Processing Letters. pp. 123–128.
  • Zemel, E. (1981). On Search Over Rationals. Vol. 1. Operations Research Letters. pp. 34–38.
  • Zemel, E. (198-). Polynomial Algorithms for Estimating Best Possible Bounds on Network Reliability. Vol. 12. Networks. pp. 439–452. {{cite book}}: Check date values in: |year= (help)CS1 maint: year (link)
  • Zemel, E. (1984). Probabilistic Analysis of Geometric Location Problems. Vol. 1. Annals of Operations Research. pp. 215–238.
  • Zemel, E. (1986). Probabilistic Analysis of Geometric Location Problems (Revised). Vol. 6. SIAM Journal of Discrete and Algebraic Methods. pp. 189–200.
  • Zemel, E. (1986). Random Binary Search: A Randomized Algorithm for Optimization in R1. Vol. 11. Mathematics of Operations Research. pp. 651–662.
  • Zemel, E. (1992). Yes, Virginia, There Really Is Total Quality Management. Anheuser-Bush Distinguished Lecture Series, SEI Center for Advanced Studies in Management, The Wharton School.

Education

Zemel received his Bachelor of Science in Mathematics from the Hebrew University of Jerusalem, his Master of Science in Applied Physics from The Weizmann Institute of Science in Israel, and his Doctor of Philosophy in Operations Research from the Graduate School of Business Administration at Carnegie Mellon University.[1]

References

Template:Persondata