Jump to content

Ethyl acrylate

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 192.118.27.253 (talk) at 13:30, 25 November 2019 (Revert good faith but unconstructive edit by IP 50.64.152.102). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Ethyl acrylate[1][2]
Skeletal structure of ethyl acrylate
Ball-and-stick model of the ethyl acrylate molecule
Names
Preferred IUPAC name
Ethyl prop-2-enoate
Other names
Ethyl propenoate
Ethyl acrylate
Acrylic acid ethyl ester
Ethyl propenoate
Ethyl ester of acrylic acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.004.945 Edit this at Wikidata
EC Number
  • 205-438-8
KEGG
RTECS number
  • AT0700000
UNII
UN number 1917
  • InChI=1S/C5H8O2/c1-3-5(6)7-4-2/h3H,1,4H2,2H3 checkY
    Key: JIGUQPWFLRLWPJ-UHFFFAOYSA-N checkY
  • InChI=1/C5H8O2/c1-3-5(6)7-4-2/h3H,1,4H2,2H3
    Key: JIGUQPWFLRLWPJ-UHFFFAOYAN
  • CCOC(=O)C=C
Properties
C5H8O2
Molar mass 100.117 g·mol−1
Appearance Clear liquid
Odor Acrid[3]
Density 0.9405 g/mL
Melting point −71 °C (−96 °F; 202 K)
Boiling point 99.4 °C (210.9 °F; 372.5 K)
1.5 g/100 mL
Vapor pressure 29 mmHg (20°C)[3]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Carcinogenic
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazards (white): no code
2
3
2
Flash point 15 °C (59 °F; 288 K)
Explosive limits 1.4%-14%[3]
Lethal dose or concentration (LD, LC):
2180 ppm (rat, 4 hr)
3894 ppm (mouse)[4]
1204 ppm (rabbit, 7 hr)
1204 ppm (guinea pig, 7 hr)[4]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 25 ppm (100 mg/m3) [skin][3]
REL (Recommended)
Carcinogen[3]
IDLH (Immediate danger)
Ca [300 ppm][3]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Ethyl acrylate is an organic compound with the formula CH2CHCO2CH2CH3. It is the ethyl ester of acrylic acid. It is a colourless liquid with a characteristic acrid odor. It is mainly produced for paints, textiles, and non-woven fibers.[5] It is also a reagent in the synthesis of various pharmaceutical intermediates.

Production

Ethyl acrylate is produced by acid-catalysed esterification of acrylic acid, which in turn is produced by oxidation of propylene. It may also be prepared from acetylene, carbon monoxide and ethanol by a Reppe reaction.

Reactions and uses

Ethyl acrylate is used in the production of polymers including resins, plastics, rubber, and denture material.[6]

Ethyl acrylate is a reactant for homologous alkyl acrylates (acrylic esters) by transesterification with higher alcohols through acidic or basic catalysis. In that way speciality acrylates are made accessible, e.g. 2-ethylhexyl acrylate (from 2-ethylhexanol) used for pressure-sensitive adhesives, cyclohexyl acrylate (from cyclohexanol) used for automotive clear lacquers, 2-hydroxyethyl acrylate (from ethylene glycol) which is crosslinkable with diisocyanates to form gels used with long-chain acrylates (from C18+ alcohols)[7] as comonomer for comb polymers for reduction of the solidification point of paraffin oils and 2-dimethylaminoethyl acrylate (from dimethylaminoethanol[8]) for the preparation of flocculants for sewage clarification and paper production.

As a reactive monomer, ethyl acrylate is used in homopolymers and copolymers with e.g. ethene, acrylic acid and its salts, amides and esters, methacrylates, acrylonitrile, maleic esters, vinyl acetate, vinyl chloride, vinylidene chloride, styrene, butadiene and unsaturated polyesters.[9] Copolymers of acrylic acid ethyl ester with ethene (EPA/ethylene-ethyl acrylate copolymers) are suitable as adhesives and polymer additives, just like ethene vinyl acetate copolymers. [10] Copolymers with acrylic acid increase the cleaning effect of liquid detergents,[11] copolymers with methacrylic acid are used as gastric juices tablet covers (Eudragit®).[12]

The large number of possible comonomer units and their combination in copolymers and terpolymers with ethyl acrylate allows the realization of different properties of the acrylate copolymers in a variety of applications in paints and adhesives, paper, textile and leather auxiliaries together with cosmetic and pharmaceutical products.

Owing to its tendency to polymerize, samples typically contain an inhibitor such as hydroquinone.

Ethyl acrylate reacts with amines catalyzed by Lewis acids in a Michael addition to β-alanine derivatives in high yields:[13]

Michael addition of an amine to ethyl acrylate

The nucleophilic addition at ethyl acrylate as an α,β-unsaturated carbonyl compound is a frequent strategy in the synthesis of pharmaceutical intermediates. Examples are the hypnotic glutethimide or the vasodilator vincamin (obsolete by now)[14] or more recent therapeutics such as the COPD agent cilomilast or the nootropic leteprinim.[15]

With dienes ethyl acrylate reacts as a good dienophile in Diels-Alder reactions e.g. with 1,3-butadiene in a [4+2] cycloaddition reaction to give a cyclohexene carboxylic acid ester in a high yield.[16]

Ethyl acrylate is also used as a flavoring agent. It has been found as a volatile component in pineapples and Beaufort cheese[17] and is a secondary component in vanilla flavor obtained from heat extraction of vanilla in amounts of up to 1 ppm. In such high concentrations it negatively affects the extracted aroma.[18]

Safety

The International Agency for Research on Cancer stated, "Overall evaluation, ethyl acrylate is possibly carcinogenic to humans (Group 2B)."[19] The United States Environmental Protection Agency (EPA) states, "Human studies on occupational exposure to ethyl acrylate... have suggested a relationship between exposure to the chemical(s) and colorectal cancer, but the evidence is conflicting and inconclusive. In a study by the National Toxicology Program (NTP), increased incidences of squamous cell papillomas and carcinomas of the forestomach were observed in rats and mice exposed via gavage (experimentally placing the chemical in the stomach). However, the NTP recently determined that these data were not relevant to human carcinogenicity since humans do not have a forestomach, and removed ethyl acrylate from its list of carcinogens."[20] (Occupational exposure generally involves exposure that occurs regularly, over an extended period of time.)

It is toxic in large doses, with an LD50 (rats, oral) of 1020 mg/kg, and day to day continuous exposure to 5 ppm is considered safe. As of October 2018, the FDA withdrew authorization for its use as a synthetic flavoring substance in food, without regard to its continuing stance that this substance does not pose a risk to public health under the conditions of its intended use.[21]

One favorable safety aspect is that ethyl acrylate has good warning properties; the odor threshold is much lower than any level of health concern. In other words, the bad odor warns people of ethyl acrylate's presence long before the concentration reaches a level capable of creating a serious health risk. Reports of the exact levels vary somewhat, but, for example, the U.S. E.P.A. reports an odor threshold of 0.0012 parts per million (ppm),[20] but the E.P.A.'s lowest level of health concern, the Acute Exposure Guideline Level-1 (AEGL-1) is 8.3 ppm,[22] which is almost 7000 times the odor threshold.

References

  1. ^ Merck Index, 11th Edition, 3715.
  2. ^ Ethyl acrylate Datasheet at Inchem.org
  3. ^ a b c d e f NIOSH Pocket Guide to Chemical Hazards. "#0261". National Institute for Occupational Safety and Health (NIOSH).
  4. ^ a b "Ethyl acrylate". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  5. ^ Takashi Ohara, Takahisa Sato, Noboru Shimizu, Günter Prescher Helmut Schwind, Otto Weiberg, Klaus Marten, Helmut Greim “Acrylic Acid and Derivatives” in Ullmann's Encyclopedia of Industrial Chemistry 2003, Wiley-VCH, Weinheim. doi:10.1002/14356007.a01_161.pub2
  6. ^ Ethyl acrylate Archived 2006-10-12 at the Wayback Machine Hazardous Substance Fact Sheet, New Jersey Department of Health and Senior Services
  7. ^ WO 1999031042, J.-M. Paul, J.-P. Gamet, "Method for conditioning long chain alkyl acrylates" 
  8. ^ EP 1284954, Gerhard Nestler, Jürgen Schröder, "Verfahren zur herstellung von estern ungesättigter carbonsäuren" 
  9. ^ "Technical Data Sheet – Ethyl Acrylate" (PDF). dow.com. Archived from the original (PDF) on 2012-07-18. Retrieved 2013-02-20.
  10. ^ "DuPontTM Elvaloy® AC Products and Properties". dupont.com. Retrieved 2013-02-20.
  11. ^ US 5409629, Jan E. Shulman, Charles E. Jones, "Use of acrylic acid/ethyl acrylate copolymers for enhanced clay soil removal in liquid laundry detergents" 
  12. ^ "EUDRAGIT® L 100-55 - EUDRAGIT® - Targeted Drug Release and Tailored Service". evonik.com. Retrieved 2013-02-20.
  13. ^ Jose Cabral, Pierre Laszlo, Loïc Mahé, Marie-Thérèse Montaufier, S. Lalatiana Randriamahefa (1989), "Catalysis of the specific Michael addition: The example of acrylate acceptors", Tetrahedron Letters (in German), vol. 30, no. 30, pp. 3969–3972, doi:10.1016/S0040-4039(00)99297-9{{citation}}: CS1 maint: multiple names: authors list (link)
  14. ^ Pharmazeutische Wirkstoffe: Synthesen, Patente, Anwendungen; von A. Kleemann u. J. Engel; 2., neubearb. u. erw. Aufl.; Stuttgart, New York; Thieme; 1982, ISBN 3-13-558402-X
  15. ^ D. Lednicer, The Organic Chemistry of Drug Synthesis, Volume 7, J. Wiley & Sons, 2008, ISBN 978-0-470-10750-8
  16. ^ K.P.C. Vollhardt, N.E. Schore, Organische Chemie, 5. Aufl., Wiley-VCH, 2012, ISBN 978-3-527-33250-2
  17. ^ "Ethyl Acrylate" (PDF; 43 kB). iarc.fr. Retrieved 2013-02-20.
  18. ^ Sensory-Directed Flavor Analysis, Ray Marsili edit., CRC Press, Taylor & Francis Group, Boca Raton, 2007, ISBN 1-57444-568-5
  19. ^ IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 71, International Agency for Research on Cancer (1999)
  20. ^ a b EPA Technology Transfer Network, Air Toxics Web Site Archived 2012-05-11 at the Wayback Machine, United States Environmental Protection Agency (accessed 2008)
  21. ^ 83 FR 50490
  22. ^ "Ethyl acrylate". Acute Exposure Guideline Levels. United States Environmental Protection Agency. Retrieved 2019-04-28.