# File:Venn0001.svg

Original file(SVG file, nominally 384 × 280 pixels, file size: 3 KB)

## Summary

One of 16 Venn diagrams, representing 2-ary Boolean functions like set operations and logical connectives:

## Operations and relations in set theory and logic

 ∅c A = A Ac ${\displaystyle \scriptstyle \cup }$ Bc trueA ↔ A A ${\displaystyle \scriptstyle \cup }$ B A ${\displaystyle \scriptstyle \subseteq }$ Bc A${\displaystyle \scriptstyle \Leftrightarrow }$A A ${\displaystyle \scriptstyle \supseteq }$ Bc A ${\displaystyle \scriptstyle \cup }$ Bc ¬A ${\displaystyle \scriptstyle \lor }$ ¬BA → ¬B A ${\displaystyle \scriptstyle \Delta }$ B A ${\displaystyle \scriptstyle \lor }$ BA ← ¬B Ac ${\displaystyle \scriptstyle \cup }$ B A ${\displaystyle \scriptstyle \supseteq }$ B A${\displaystyle \scriptstyle \Rightarrow }$¬B A = Bc A${\displaystyle \scriptstyle \Leftarrow }$¬B A ${\displaystyle \scriptstyle \subseteq }$ B Bc A ${\displaystyle \scriptstyle \lor }$ ¬BA ← B A A ${\displaystyle \scriptstyle \oplus }$ BA ↔ ¬B Ac ¬A ${\displaystyle \scriptstyle \lor }$ BA → B B B = ∅ A${\displaystyle \scriptstyle \Leftarrow }$B A = ∅c A${\displaystyle \scriptstyle \Leftrightarrow }$¬B A = ∅ A${\displaystyle \scriptstyle \Rightarrow }$B B = ∅c ¬B A ${\displaystyle \scriptstyle \cap }$ Bc A (A ${\displaystyle \scriptstyle \Delta }$ B)c ¬A Ac ${\displaystyle \scriptstyle \cap }$ B B B${\displaystyle \scriptstyle \Leftrightarrow }$false A${\displaystyle \scriptstyle \Leftrightarrow }$true A = B A${\displaystyle \scriptstyle \Leftrightarrow }$false B${\displaystyle \scriptstyle \Leftrightarrow }$true A ${\displaystyle \scriptstyle \land }$ ¬B Ac ${\displaystyle \scriptstyle \cap }$ Bc A ${\displaystyle \scriptstyle \leftrightarrow }$ B A ${\displaystyle \scriptstyle \cap }$ B ¬A ${\displaystyle \scriptstyle \land }$ B A${\displaystyle \scriptstyle \Leftrightarrow }$B ¬A ${\displaystyle \scriptstyle \land }$ ¬B ∅ A ${\displaystyle \scriptstyle \land }$ B A = Ac falseA ↔ ¬A A${\displaystyle \scriptstyle \Leftrightarrow }$¬A These sets (statements) have complements (negations).They are in the opposite position within this matrix. These relations are statements, and have negations.They are shown in a separate matrix in the box below.

 This work is ineligible for copyright and therefore in the public domain because it consists entirely of information that is common property and contains no original authorship.

## File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current14:06, 26 July 2009384 × 280 (3 KB)Watchduck
14:05, 26 July 2009384 × 280 (3 KB)Watchduck
13:24, 26 January 2008615 × 463 (4 KB)Watchduck{{Information |Description= |Source=eigene arbeit |Date= |Author= Tilman Piesk |Permission= |other_versions= }}
15:57, 22 January 2008615 × 463 (4 KB)Watchduck{{Information |Description=Venn diagrams (sometimes called Johnston diagrams) concerning propositional calculus and set theory |Source=own work |Date=2008/Jan/22 |Author=Tilman Piesk |Permission=publich domain |other_versions= }}
14:26, 22 January 2008480 × 360 (3 KB)Watchduck{{Information |Description= |Source= |Date= |Author= |Permission= |other_versions= }}

## Global file usage

The following other wikis use this file:

• Usage on als.wikipedia.org
• Usage on am.wikipedia.org
• Usage on ar.wikipedia.org
• Usage on ast.wikipedia.org
• Usage on az.wikipedia.org
• Usage on bar.wikipedia.org
• Usage on ba.wikipedia.org