Jump to content

Gieseking manifold

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by ClueBot NG (talk | contribs) at 06:59, 23 May 2018 (Reverting possible vandalism by 118.138.120.167 to version by 2001:388:608C:4C73:D62:B5E1:3669:F8. Report False Positive? Thanks, ClueBot NG. (3388966) (Bot)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, the Gieseking manifold is a cusped hyperbolic 3-manifold of finite volume. It is non-orientable and has the smallest volume among non-compact hyperbolic manifolds, having volume approximately 1.01494161. It was discovered by Gieseking (1912).

The Gieseking manifold can be constructed by removing the vertices from a tetrahedron, then gluing the faces together in pairs using affine-linear maps. Label the vertices 0, 1, 2, 3. Glue the face with vertices 0,1,2 to the face with vertices 3,1,0 in that order. Glue the face 0,2,3 to the face 3,2,1 in that order. In the hyperbolic structure of the Gieseking manifold, this ideal tetrahedron is the canonical polyhedral decomposition of Epstein-Penner. Moreover, the angle made by the faces is . The triangulation has one tetrahedron, two faces, one edge and no vertices, so all the edges of the original tetrahedron are glued together.

The Gieseking manifold has a double cover homeomorphic to the figure-eight knot complement. The underlying compact manifold has boundary a Klein bottle, and the first homology group of the Gieseking manifold is the integers.

The Gieseking manifold is a fiber bundle over the circle with fiber the once-punctured torus and monodromy given by The square of this map is Arnold's cat map and this gives another way to see that the Gieseking manifold is double covered by the complement of the figure-eight knot.

References

  • Gieseking, H. (1912), Analytische Untersuchungen über Topologische Gruppen, Thesis, Muenster, JFM 43.0202.03
  • Adams, Colin C. (1987), "The noncompact hyperbolic 3-manifold of minimal volume", Proceedings of the American Mathematical Society, 100 (4): 601–606, doi:10.2307/2046691, ISSN 0002-9939, MR 0894423