Jump to content

Hantzsch ester

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by BiomolecularGraphics4All (talk | contribs) at 19:16, 23 December 2015 (Add this page to the category pyridine forming reactions). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Hantzsch pyridine synthesis
Named after Arthur Rudolf Hantzsch
Reaction type Ring forming reaction
Identifiers
Organic Chemistry Portal hantzsch-dihydropyridine-synthesis
RSC ontology ID RXNO:0000268

The Hantzsch pyridine synthesis or Hantzsch dihydropyridine synthesis is a multi-component organic reaction between an aldehyde such as formaldehyde, 2 equivalents of a β-keto ester such as ethyl acetoacetate and a nitrogen donor such as ammonium acetate or ammonia.[1] The initial reaction product is a dihydropyridine which can be oxidized in a subsequent step to a pyridine. The driving force for this second reaction step is aromatization. This reaction was reported in 1881 by Arthur Rudolf Hantzsch.

A 1,4-dihydropyridine dicarboxylate is also called a 1,4-DHP compound or a Hantzsch compound. These compounds are an important class of calcium channel blockers and as such commercialized in for instance nifedipine, amlodipine or nimodipine.

The reaction has been demonstrated to proceed in water as reaction solvent and with direct aromatization by ferric chloride, Manganese Dioxide or potassium permanganate in a one-pot synthesis.[2]

Hantzsch reaction with ammonium acetate, ethyl acetoacetate, formaldehyde and ferric chloride
Hantzsch reaction with ammonium acetate, ethyl acetoacetate, formaldehyde and ferric chloride

The Hantzsch dihydropyridine synthesis is found to benefit from microwave chemistry.[3]

Knoevenagel–Fries modification

The Knoevenagel–Fries modification allows for the synthesis of unsymmetrical pyridine compounds.[4]

References

  1. ^ Hantzsch, A. (1881). "Condensationprodukte aus Aldehydammoniak und Ketonartigen Verbindungen". Chemische Berichte. 14 (2): 1637–8. doi:10.1002/cber.18810140214.
  2. ^ Xia, J. J.; Wang, G. W. (2005). "One-Pot Synthesis and Aromatization of 1,4-Dihydropyridines in Refluxing Water". Synthesis. 2005 (14): 2379–83. doi:10.1055/s-2005-870022.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ van den Eynde, J. J.; Mayence, A. (2003). "Synthesis and Aromatization of Hantzsch 1,4-Dihydropyridines under Microwave Irradiation. An Overview" (PDF). Molecules. 8 (4): 381–91. doi:10.3390/80400381.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  4. ^ Knoevenagel, E.; Fries, A. (1898). "Synthesen in der Pyridinreihe. Ueber eine Erweiterung der Hantzsch'schen Dihydropyridinsynthese". Berichte der Deutschen Chemischen Gesellschaft. 31 (1): 761–7. doi:10.1002/cber.189803101157.