Hardy's inequality is an inequality in mathematics , named after G. H. Hardy . It states that if
a
1
,
a
2
,
a
3
,
…
{\displaystyle a_{1},a_{2},a_{3},\dots }
is a sequence of non-negative real numbers , then for every real number p > 1 one has
∑
n
=
1
∞
(
a
1
+
a
2
+
⋯
+
a
n
n
)
p
≤
(
p
p
−
1
)
p
∑
n
=
1
∞
a
n
p
.
{\displaystyle \sum _{n=1}^{\infty }\left({\frac {a_{1}+a_{2}+\cdots +a_{n}}{n}}\right)^{p}\leq \left({\frac {p}{p-1}}\right)^{p}\sum _{n=1}^{\infty }a_{n}^{p}.}
If the right-hand side is finite, equality holds if and only if
a
n
=
0
{\displaystyle a_{n}=0}
for all n .
An integral version of Hardy's inequality states the following: if f is a measurable function with non-negative values, then
∫
0
∞
(
1
x
∫
0
x
f
(
t
)
d
t
)
p
d
x
≤
(
p
p
−
1
)
p
∫
0
∞
f
(
x
)
p
d
x
.
{\displaystyle \int _{0}^{\infty }\left({\frac {1}{x}}\int _{0}^{x}f(t)\,dt\right)^{p}\,dx\leq \left({\frac {p}{p-1}}\right)^{p}\int _{0}^{\infty }f(x)^{p}\,dx.}
If the right-hand side is finite, equality holds if and only if f (x ) = 0 almost everywhere .
Hardy's inequality was first published and proved (at least the discrete version with a worse constant) in 1920 in a note by Hardy.[ 1] The original formulation was in an integral form slightly different from the above.
General one-dimensional version [ edit ]
The general weighted one dimensional version reads as follows:[ 2] : §329
If
α
+
1
p
<
1
{\displaystyle \alpha +{\tfrac {1}{p}}<1}
, then
∫
0
∞
(
y
α
−
1
∫
0
y
x
−
α
f
(
x
)
d
x
)
p
d
y
≤
1
(
1
−
α
−
1
p
)
p
∫
0
∞
f
(
x
)
p
d
x
{\displaystyle \int _{0}^{\infty }{\biggl (}y^{\alpha -1}\int _{0}^{y}x^{-\alpha }f(x)\,dx{\biggr )}^{p}\,dy\leq {\frac {1}{{\bigl (}1-\alpha -{\frac {1}{p}}{\bigr )}^{p}}}\int _{0}^{\infty }f(x)^{p}\,dx}
If
α
+
1
p
>
1
{\displaystyle \alpha +{\tfrac {1}{p}}>1}
, then
∫
0
∞
(
y
α
−
1
∫
y
∞
x
−
α
f
(
x
)
d
x
)
p
d
y
≤
1
(
α
+
1
p
−
1
)
p
∫
0
∞
f
(
x
)
p
d
x
.
{\displaystyle \int _{0}^{\infty }{\biggl (}y^{\alpha -1}\int _{y}^{\infty }x^{-\alpha }f(x)\,dx{\biggr )}^{p}\,dy\leq {\frac {1}{{\bigl (}\alpha +{\frac {1}{p}}-1{\bigr )}^{p}}}\int _{0}^{\infty }f(x)^{p}\,dx.}
Multidimensional versions [ edit ]
Multidimensional Hardy inequality around a point [ edit ]
In the multidimensional case, Hardy's inequality can be extended to
L
p
{\displaystyle L^{p}}
-spaces, taking the form [ 3]
‖
f
|
x
|
‖
L
p
(
R
n
)
≤
p
n
−
p
‖
∇
f
‖
L
p
(
R
n
)
,
2
≤
n
,
1
≤
p
<
n
,
{\displaystyle \left\|{\frac {f}{|x|}}\right\|_{L^{p}(\mathbb {R} ^{n})}\leq {\frac {p}{n-p}}\|\nabla f\|_{L^{p}(\mathbb {R} ^{n})},2\leq n,1\leq p<n,}
where
f
∈
C
0
∞
(
R
n
)
{\displaystyle f\in C_{0}^{\infty }(\mathbb {R} ^{n})}
, and where the constant
p
n
−
p
{\displaystyle {\frac {p}{n-p}}}
is known to be sharp; by density it extends then to the Sobolev space
W
1
,
p
(
R
n
)
{\displaystyle W^{1,p}(\mathbb {R} ^{n})}
.
Similarly, if
p
>
n
≥
2
{\displaystyle p>n\geq 2}
, then one has for every
f
∈
C
0
∞
(
R
n
)
{\displaystyle f\in C_{0}^{\infty }(\mathbb {R} ^{n})}
(
1
−
n
p
)
p
∫
R
n
|
f
(
x
)
−
f
(
0
)
|
p
|
x
|
p
d
x
≤
∫
R
n
|
∇
f
|
p
.
{\displaystyle {\Big (}1-{\frac {n}{p}}{\Big )}^{p}\int _{\mathbb {R} ^{n}}{\frac {\vert f(x)-f(0)\vert ^{p}}{|x|^{p}}}dx\leq \int _{\mathbb {R} ^{n}}\vert \nabla f\vert ^{p}.}
Multidimensional Hardy inequality near the boundary [ edit ]
If
Ω
⊊
R
n
{\displaystyle \Omega \subsetneq \mathbb {R} ^{n}}
is an nonempty convex open set, then for every
f
∈
W
1
,
p
(
Ω
)
{\displaystyle f\in W^{1,p}(\Omega )}
,
(
1
−
1
p
)
p
∫
Ω
|
f
(
x
)
|
p
dist
(
x
,
∂
Ω
)
p
d
x
≤
∫
Ω
|
∇
f
|
p
,
{\displaystyle {\Big (}1-{\frac {1}{p}}{\Big )}^{p}\int _{\Omega }{\frac {\vert f(x)\vert ^{p}}{\operatorname {dist} (x,\partial \Omega )^{p}}}\,dx\leq \int _{\Omega }\vert \nabla f\vert ^{p},}
and the constant cannot be improved.[ 4]
Fractional Hardy inequality [ edit ]
If
1
≤
p
<
∞
{\displaystyle 1\leq p<\infty }
and
0
<
λ
<
∞
{\displaystyle 0<\lambda <\infty }
,
λ
≠
1
{\displaystyle \lambda \neq 1}
, there exists a constant
C
{\displaystyle C}
such that for every
f
:
(
0
,
∞
)
→
R
{\displaystyle f:(0,\infty )\to \mathbb {R} }
satisfying
∫
0
∞
|
f
(
x
)
|
p
/
x
λ
d
x
<
∞
{\displaystyle \int _{0}^{\infty }\vert f(x)\vert ^{p}/x^{\lambda }\,dx<\infty }
, one has[ 5] : Lemma 2
∫
0
∞
|
f
(
x
)
|
p
x
λ
d
x
≤
C
∫
0
∞
∫
0
∞
|
f
(
x
)
−
f
(
y
)
|
p
|
x
−
y
|
1
+
λ
d
x
d
y
.
{\displaystyle \int _{0}^{\infty }{\frac {\vert f(x)\vert ^{p}}{x^{\lambda }}}\,dx\leq C\int _{0}^{\infty }\int _{0}^{\infty }{\frac {\vert f(x)-f(y)\vert ^{p}}{\vert x-y\vert ^{1+\lambda }}}\,dx\,dy.}
Proof of the inequality [ edit ]
A change of variables gives
(
∫
0
∞
(
1
x
∫
0
x
f
(
t
)
d
t
)
p
d
x
)
1
/
p
=
(
∫
0
∞
(
∫
0
1
f
(
s
x
)
d
s
)
p
d
x
)
1
/
p
,
{\displaystyle \left(\int _{0}^{\infty }\left({\frac {1}{x}}\int _{0}^{x}f(t)\,dt\right)^{p}\ dx\right)^{1/p}=\left(\int _{0}^{\infty }\left(\int _{0}^{1}f(sx)\,ds\right)^{p}\,dx\right)^{1/p},}
which is less or equal than
∫
0
1
(
∫
0
∞
f
(
s
x
)
p
d
x
)
1
/
p
d
s
{\displaystyle \int _{0}^{1}\left(\int _{0}^{\infty }f(sx)^{p}\,dx\right)^{1/p}\,ds}
by Minkowski's integral inequality .
Finally, by another change of variables, the last expression equals
∫
0
1
(
∫
0
∞
f
(
x
)
p
d
x
)
1
/
p
s
−
1
/
p
d
s
=
p
p
−
1
(
∫
0
∞
f
(
x
)
p
d
x
)
1
/
p
.
{\displaystyle \int _{0}^{1}\left(\int _{0}^{\infty }f(x)^{p}\,dx\right)^{1/p}s^{-1/p}\,ds={\frac {p}{p-1}}\left(\int _{0}^{\infty }f(x)^{p}\,dx\right)^{1/p}.}
Discrete version: from the continuous version [ edit ]
Assuming the right-hand side to be finite, we must have
a
n
→
0
{\displaystyle a_{n}\to 0}
as
n
→
∞
{\displaystyle n\to \infty }
. Hence, for any positive integer j , there are only finitely many terms bigger than
2
−
j
{\displaystyle 2^{-j}}
.
This allows us to construct a decreasing sequence
b
1
≥
b
2
≥
⋯
{\displaystyle b_{1}\geq b_{2}\geq \dotsb }
containing the same positive terms as the original sequence (but possibly no zero terms). Since
a
1
+
a
2
+
⋯
+
a
n
≤
b
1
+
b
2
+
⋯
+
b
n
{\displaystyle a_{1}+a_{2}+\dotsb +a_{n}\leq b_{1}+b_{2}+\dotsb +b_{n}}
for every n , it suffices to show the inequality for the new sequence. This follows directly from the integral form, defining
f
(
x
)
=
b
n
{\displaystyle f(x)=b_{n}}
if
n
−
1
<
x
<
n
{\displaystyle n-1<x<n}
and
f
(
x
)
=
0
{\displaystyle f(x)=0}
otherwise. Indeed, one has
∫
0
∞
f
(
x
)
p
d
x
=
∑
n
=
1
∞
b
n
p
{\displaystyle \int _{0}^{\infty }f(x)^{p}\,dx=\sum _{n=1}^{\infty }b_{n}^{p}}
and, for
n
−
1
<
x
<
n
{\displaystyle n-1<x<n}
, there holds
1
x
∫
0
x
f
(
t
)
d
t
=
b
1
+
⋯
+
b
n
−
1
+
(
x
−
n
+
1
)
b
n
x
≥
b
1
+
⋯
+
b
n
n
{\displaystyle {\frac {1}{x}}\int _{0}^{x}f(t)\,dt={\frac {b_{1}+\dots +b_{n-1}+(x-n+1)b_{n}}{x}}\geq {\frac {b_{1}+\dots +b_{n}}{n}}}
(the last inequality is equivalent to
(
n
−
x
)
(
b
1
+
⋯
+
b
n
−
1
)
≥
(
n
−
1
)
(
n
−
x
)
b
n
{\displaystyle (n-x)(b_{1}+\dots +b_{n-1})\geq (n-1)(n-x)b_{n}}
, which is true as the new sequence is decreasing) and thus
∑
n
=
1
∞
(
b
1
+
⋯
+
b
n
n
)
p
≤
∫
0
∞
(
1
x
∫
0
x
f
(
t
)
d
t
)
p
d
x
{\displaystyle \sum _{n=1}^{\infty }\left({\frac {b_{1}+\dots +b_{n}}{n}}\right)^{p}\leq \int _{0}^{\infty }\left({\frac {1}{x}}\int _{0}^{x}f(t)\,dt\right)^{p}\,dx}
.
Discrete version: Direct proof [ edit ]
Let
p
>
1
{\displaystyle p>1}
and let
b
1
,
…
,
b
n
{\displaystyle b_{1},\dots ,b_{n}}
be positive real numbers. Set
S
k
=
∑
i
=
1
k
b
i
{\displaystyle S_{k}=\sum _{i=1}^{k}b_{i}}
.
First we prove the inequality
∑
n
=
1
N
S
n
p
n
p
≤
p
p
−
1
∑
n
=
1
N
b
n
S
n
p
−
1
n
p
−
1
,
{\displaystyle \sum _{n=1}^{N}{\frac {S_{n}^{p}}{n^{p}}}\leq {\frac {p}{p-1}}\sum _{n=1}^{N}{\frac {b_{n}S_{n}^{p-1}}{n^{p-1}}},}
(* )
Let
T
n
=
S
n
n
{\displaystyle T_{n}={\frac {S_{n}}{n}}}
and let
Δ
n
{\displaystyle \Delta _{n}}
be the difference between the
n
{\displaystyle n}
-th terms in the right-hand side and left-hand side of * , that is,
Δ
n
:=
T
n
p
−
p
p
−
1
b
n
T
n
p
−
1
{\displaystyle \Delta _{n}:=T_{n}^{p}-{\frac {p}{p-1}}b_{n}T_{n}^{p-1}}
. We have:
Δ
n
=
T
n
p
−
p
p
−
1
b
n
T
n
p
−
1
=
T
n
p
−
p
p
−
1
(
n
T
n
−
(
n
−
1
)
T
n
−
1
)
T
n
p
−
1
{\displaystyle \Delta _{n}=T_{n}^{p}-{\frac {p}{p-1}}b_{n}T_{n}^{p-1}=T_{n}^{p}-{\frac {p}{p-1}}(nT_{n}-(n-1)T_{n-1})T_{n}^{p-1}}
or
Δ
n
=
T
n
p
(
1
−
n
p
p
−
1
)
+
p
(
n
−
1
)
p
−
1
T
n
−
1
T
n
p
.
{\displaystyle \Delta _{n}=T_{n}^{p}\left(1-{\frac {np}{p-1}}\right)+{\frac {p(n-1)}{p-1}}T_{n-1}T_{n}^{p}.}
According to Young's inequality we have:
T
n
−
1
T
n
p
−
1
≤
T
n
−
1
p
p
+
(
p
−
1
)
T
n
p
p
,
{\displaystyle T_{n-1}T_{n}^{p-1}\leq {\frac {T_{n-1}^{p}}{p}}+(p-1){\frac {T_{n}^{p}}{p}},}
from which it follows that:
Δ
n
≤
n
−
1
p
−
1
T
n
−
1
p
−
n
p
−
1
T
n
p
.
{\displaystyle \Delta _{n}\leq {\frac {n-1}{p-1}}T_{n-1}^{p}-{\frac {n}{p-1}}T_{n}^{p}.}
By telescoping we have:
∑
n
=
1
N
Δ
n
≤
0
−
1
p
−
1
T
1
p
+
1
p
−
1
T
1
p
−
2
p
−
1
T
2
p
+
2
p
−
1
T
2
p
−
3
p
−
1
T
3
p
+
⋯
+
N
−
1
p
−
1
T
N
−
1
p
−
N
p
−
1
T
N
p
=
−
N
p
−
1
T
N
p
<
0
,
{\displaystyle {\begin{aligned}\sum _{n=1}^{N}\Delta _{n}&\leq 0-{\frac {1}{p-1}}T_{1}^{p}+{\frac {1}{p-1}}T_{1}^{p}-{\frac {2}{p-1}}T_{2}^{p}+{\frac {2}{p-1}}T_{2}^{p}-{\frac {3}{p-1}}T_{3}^{p}+\dotsb +{\frac {N-1}{p-1}}T_{N-1}^{p}-{\frac {N}{p-1}}T_{N}^{p}\\&=-{\frac {N}{p-1}}T_{N}^{p}<0,\end{aligned}}}
proving * .
Applying Hölder's inequality to the right-hand side of * we have:
∑
n
=
1
N
S
n
p
n
p
≤
p
p
−
1
∑
n
=
1
N
b
n
S
n
p
−
1
n
p
−
1
≤
p
p
−
1
(
∑
n
=
1
N
b
n
p
)
1
/
p
(
∑
n
=
1
N
S
n
p
n
p
)
(
p
−
1
)
/
p
{\displaystyle \sum _{n=1}^{N}{\frac {S_{n}^{p}}{n^{p}}}\leq {\frac {p}{p-1}}\sum _{n=1}^{N}{\frac {b_{n}S_{n}^{p-1}}{n^{p-1}}}\leq {\frac {p}{p-1}}\left(\sum _{n=1}^{N}b_{n}^{p}\right)^{1/p}\left(\sum _{n=1}^{N}{\frac {S_{n}^{p}}{n^{p}}}\right)^{(p-1)/p}}
from which we immediately obtain:
∑
n
=
1
N
S
n
p
n
p
≤
(
p
p
−
1
)
p
∑
n
=
1
N
b
n
p
.
{\displaystyle \sum _{n=1}^{N}{\frac {S_{n}^{p}}{n^{p}}}\leq \left({\frac {p}{p-1}}\right)^{p}\sum _{n=1}^{N}b_{n}^{p}.}
Letting
N
→
∞
{\displaystyle N\rightarrow \infty }
we obtain Hardy's inequality.
^ Hardy, G. H. (1920). "Note on a theorem of Hilbert" . Mathematische Zeitschrift . 6 (3–4): 314–317. doi :10.1007/BF01199965 . S2CID 122571449 .
^ Hardy, G. H.; Littlewood, J.E.; Pólya, G. (1952). Inequalities (Second ed.). Cambridge, UK. {{cite book }}
: CS1 maint: location missing publisher (link )
^ Ruzhansky, Michael; Suragan, Durvudkhan (2019). Hardy Inequalities on Homogeneous Groups: 100 Years of Hardy Inequalities . Birkhäuser Basel. ISBN 978-3-030-02894-7 .
^ Marcus, Moshe; Mizel, Victor J.; Pinchover, Yehuda (1998). "On the best constant for Hardy's inequality in $\mathbb {R}^n$" . Transactions of the American Mathematical Society . 350 (8): 3237–3255. doi :10.1090/S0002-9947-98-02122-9 .
^ Mironescu, Petru (2018). "The role of the Hardy type inequalities in the theory of function spaces" (PDF) . Revue roumaine de mathématiques pures et appliquées . 63 (4): 447–525.
Hardy, G. H.; Littlewood, J. E.; Pólya, G. (1952). Inequalities (2nd ed.). Cambridge University Press. ISBN 0-521-35880-9 .
Masmoudi, Nader (2011), "About the Hardy Inequality", in Dierk Schleicher; Malte Lackmann (eds.), An Invitation to Mathematics , Springer Berlin Heidelberg, ISBN 978-3-642-19533-4 .
Ruzhansky, Michael; Suragan, Durvudkhan (2019). Hardy Inequalities on Homogeneous Groups: 100 Years of Hardy Inequalities . Birkhäuser Basel. ISBN 978-3-030-02895-4 .