Henk van der Vorst

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Hendrik "Henk" Albertus van der Vorst (born 5 May 1944, Venlo)[1] is a Dutch mathematician and Emeritus Professor of Numerical Analysis at Utrecht University. According to the Institute for Scientific Information (ISI), his paper[2] on the BiCGSTAB method was the most cited paper in the field of mathematics in the 1990s.[3] He is a member of the Royal Netherlands Academy of Arts and Sciences (KNAW) since 2002[4] and the Netherlands Academy of Technology and Innovation.[5] In 2006 he was awarded a knighthood of the Order of the Netherlands Lion.[6] Henk van der Vorst is a Fellow of Society for Industrial and Applied Mathematics (SIAM).[7]

His major contributions include preconditioned iterative methods, in particular the ICCG (incomplete Cholesky conjugate gradient) method (developed together with Koos Meijerink), a version of preconditioned conjugate gradient method,[8][9] the BiCGSTAB[2] and (together with Kees Vuik) GMRESR[10] Krylov subspace methods and (together with Gerard Sleijpen) the Jacobi-Davidson method[11] for solving ordinary, generalized, and nonlinear eigenproblems. He has analyzed convergence behavior of the conjugate gradient[12] and Lanczos methods. He has also developed a number of preconditioners for parallel computers,[13] including truncated Neumann series preconditioner, incomplete twisted factorizations, and the incomplete factorization based on the so-called "vdv" ordering.

He is the author of the book[14] and one of the authors of the Templates projects for linear problems[15] and eigenproblems.[16]


  1. ^ Prof.dr. H.A. van der Vorst at the Catalogus Professorum Academiæ Rheno-Traiectinæ
  2. ^ a b H.A. van der Vorst (1992), "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems", SIAM J. Sci. Stat. Comput., 13 (2): 631–644, doi:10.1137/0913035 
  3. ^ in-cites, September 2001, 2001 
  4. ^ "Henk van der Vorst" (in Dutch). Royal Netherlands Academy of Arts and Sciences. Retrieved 14 July 2015. 
  5. ^ Members of the Netherlands Academy of Technology and Innovation, archived from the original on 2011-07-24 
  6. ^ Jan Brandts; Bernd Fischer; Andy Wathen (December 2006), "Reflections on Sir Henk van der Vorst", SIAM News, 39 (10) 
  7. ^ "SIAM Fellows: Class of 2009". SIAM. Retrieved 2009-12-18. 
  8. ^ J.A. Meijerink; H.A.van der Vorst (1977), "An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix is a Symmetric M-Matrix", Math. Comp., American Mathematical Society, 31 (137): 148–162, doi:10.2307/2005786, JSTOR 2005786 
  9. ^ H.A. van der Vorst (1981), "Iterative solution methods for certain sparse linear systems with a non-symmetric matrix arising from PDE-problems", J. Comput. Phys., 44: 1–19, doi:10.1016/0021-9991(81)90034-6 
  10. ^ H.A. van der Vorst; C. Vuik (1994), "GMRESR: A family of nested GMRES methods", Numer. Lin. Alg. Appl., 1 (4): 369–386, doi:10.1002/nla.1680010404 
  11. ^ G.L.G. Sleijpen; H.A. van der Vorst (1996), "A Jacobi-Davidson iteration method for linear eigenvalue problems", SIAM J. Matrix Anal. Appl., 17 (2): 401–425, CiteSeerX accessible, doi:10.1137/S0895479894270427 
  12. ^ A. van der Sluis; H.A. van der Vorst (1986), "The rate of convergence of conjugate gradients", Numerische Mathematik, 48 (5): 543–560, doi:10.1007/BF01389450 
  13. ^ H.A. van der Vorst (1989), "High performance preconditioning", SIAM J. Sci. Statist. Comput., 10 (6): 1174–1185, doi:10.1137/0910071 
  14. ^ H.A. van der Vorst (April 2003), Iterative Krylov Methods for Large Linear systems, Cambridge University Press, Cambridge, ISBN 0-521-81828-1 
  15. ^ Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, Accessed January 2008, ISBN 0-89871-328-5  Check date values in: |year= (help)
  16. ^ Templates for the Solution of Algebraic Eigenvalue Problems: a Practical Guide, Accessed January 2008, ISBN 0-89871-471-0  Check date values in: |year= (help)

External links[edit]