Jump to content

Horndeski's theory

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by CitationCleanerBot (talk | contribs) at 15:04, 27 May 2018 (→‎top: arxivify URL / redundant url). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Horndeski's theory is the most general theory of gravity in four dimensions whose Lagrangian is constructed out of the metric tensor and a scalar field and leads to second order equations of motion[clarification needed]. The theory was first proposed by Gregory Horndeski in 1974[1] and has found numerous applications, particularly in the construction of cosmological models of Inflation and dark energy.[2] Horndeski's theory contains many theories of gravity, including General relativity, Brans-Dicke theory, Quintessence, Dilaton, Chameleon and covariant Galileon[3] as special cases.

Horndeski's theory can be written in terms of an action as[4]

with the Lagrangian densities

Here is Newton's constant, represents the matter Lagrangian, to are generic functions of and , are the Ricci and Einstein tensors, is the Jordan frame metric, semicolon indicates covariant derivatives, commas indicate partial derivatives, , and repeated indices are summed over following Einstein's convention.

The free parameters of the theory, especially the contributions from and , are strongly constrained by the direct measurement of the speed of gravitational waves following GW170817.[5][6][7][8][9][10]

See also

References

  1. ^ Horndeski, Gregory Walter (1974-09-01). "Second-order scalar-tensor field equations in a four-dimensional space". International Journal of Theoretical Physics. 10 (6): 363–384. Bibcode:1974IJTP...10..363H. doi:10.1007/BF01807638. ISSN 0020-7748.
  2. ^ Clifton, Timothy; Ferreira, Pedro G.; Padilla, Antonio; Skordis, Constantinos (March 2012). "Modified Gravity and Cosmology". Physics Reports. 513 (1–3): 1–189. arXiv:1106.2476. Bibcode:2012PhR...513....1C. doi:10.1016/j.physrep.2012.01.001.
  3. ^ Deffayet, C.; Esposito-Farese, G.; Vikman, A. (2009-04-03). "Covariant Galileon". Physical Review D. 79 (8): 084003. arXiv:0901.1314. Bibcode:2009PhRvD..79h4003D. doi:10.1103/PhysRevD.79.084003. ISSN 1550-7998.
  4. ^ Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi (2011-09-01). "Generalized G-inflation: Inflation with the most general second-order field equations". Progress of Theoretical Physics. 126 (3): 511–529. arXiv:1105.5723. Bibcode:2011PThPh.126..511K. doi:10.1143/PTP.126.511. ISSN 0033-068X.
  5. ^ Lombriser, Lucas; Taylor, Andy (2016-03-16). "Breaking a Dark Degeneracy with Gravitational Waves". Journal of Cosmology and Astroparticle Physics. 2016 (3): 031–031. arXiv:1509.08458. Bibcode:2016JCAP...03..031L. doi:10.1088/1475-7516/2016/03/031. ISSN 1475-7516.
  6. ^ Bettoni, Dario; Ezquiaga, Jose María; Hinterbichler, Kurt; Zumalacárregui, Miguel (2017-04-14). "Speed of Gravitational Waves and the Fate of Scalar-Tensor Gravity". Physical Review D. 95 (8): 084029. arXiv:1608.01982. Bibcode:2017PhRvD..95h4029B. doi:10.1103/PhysRevD.95.084029. ISSN 2470-0010.
  7. ^ Creminelli, Paolo; Vernizzi, Filippo (2017-10-16). "Dark Energy after GW170817". arXiv:1710.05877 [astro-ph.CO].
  8. ^ Sakstein, Jeremy; Jain, Bhuvnesh (2017-10-16). "Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories". arXiv:1710.05893 [astro-ph.CO].
  9. ^ Ezquiaga, Jose María; Zumalacárregui, Miguel (2017-12-18). "Dark Energy After GW170817: Dead Ends and the Road Ahead". Physical Review Letters. 119 (25): 251304. arXiv:1710.05901. Bibcode:2017PhRvL.119y1304E. doi:10.1103/PhysRevLett.119.251304.
  10. ^ Grossman, Lisa (2017-10-24). "What detecting gravitational waves means for the expansion of the universe". Science News. Retrieved 2017-11-08.