Hyperbolic equilibrium point

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In the study of dynamical systems, a hyperbolic equilibrium point or hyperbolic fixed point is a fixed point that does not have any center manifolds. Near a hyperbolic point the orbits of a two-dimensional, non-dissipative system resemble hyperbolas. This fails to hold in general. Strogatz notes that "hyperbolic is an unfortunate name—it sounds like it should mean 'saddle point'—but it has become standard."[1] Several properties hold about a neighborhood of a hyperbolic point, notably[2]

Orbits near a two-dimensional saddle point, an example of a hyperbolic equilibrium.

Maps[edit]

If is a C1 map and p is a fixed point then p is said to be a hyperbolic fixed point when the Jacobian matrix has no eigenvalues on the unit circle.

One example of a map that its only fixed point is hyperbolic is Arnold's cat map:

Since the eigenvalues are given by

Flows[edit]

Let be a C1 vector field with a critical point p, i.e., F(p) = 0, and let J denote the Jacobian matrix of F at p. If the matrix J has no eigenvalues with zero real parts then p is called hyperbolic. Hyperbolic fixed points may also be called hyperbolic critical points or elementary critical points.[3]

The Hartman–Grobman theorem states that the orbit structure of a dynamical system in a neighbourhood of a hyperbolic equilibrium point is topologically equivalent to the orbit structure of the linearized dynamical system.

Example[edit]

Consider the nonlinear system

(0, 0) is the only equilibrium point. The linearization at the equilibrium is

.

The eigenvalues of this matrix are . For all values of α ≠ 0, the eigenvalues have non-zero real part. Thus, this equilibrium point is a hyperbolic equilibrium point. The linearized system will behave similar to the non-linear system near (0, 0). When α = 0, the system has a nonhyperbolic equilibrium at (0, 0).

Comments[edit]

In the case of an infinite dimensional system—for example systems involving a time delay—the notion of the "hyperbolic part of the spectrum" refers to the above property.

See also[edit]

Notes[edit]

  1. ^ Strogatz, Steven (2001). Nonlinear Dynamics and Chaos. Westview Press. ISBN 0-7382-0453-6. 
  2. ^ Ott, Edward (1994). Chaos in Dynamical Systems. Cambridge University Press. ISBN 0-521-43799-7. 
  3. ^ Abraham, Ralph; Marsden, Jerrold E. (1978). Foundations of Mechanics. Reading Mass.: Benjamin/Cummings. ISBN 0-8053-0102-X. 

References[edit]