International Commission on Radiological Protection
Abbreviation | ICRP |
---|---|
Formation | 1928 |
Type | INGO |
Location | |
Region served | Worldwide |
Official language | English, French |
Website | ICRP Official website |
The International Commission on Radiological Protection (ICRP) is an independent, international, non-governmental organization, which provides recommendations and guidance on radiation protection.
It was founded in 1928 by at the second International Congress of Radiology in Stockholm, Sweden and was then called the International X-ray and Radium Protection Committee (IXRPC).[1] In 1950 it was restructured to take account of new uses of radiation outside the medical area, and given its present name.
The ICRP is a sister organisation to the International Commission on Radiation Units and Measurements (ICRU). In general terms ICRU defines the units, and ICRP recommends, develops and maintains the International System of Radiological Protection which uses these units.
Operation
The ICRP is a not-for-profit organisation registered as a charity in the United Kingdom and has its scientific secretariat in Ottawa, Canada.
It is an independent, international organisation with more than two hundred volunteer members from approximately thirty countries on six continents, who represent the world's leading scientists and policy makers in the field of radiological protection.
The International System of Radiological Protection has been developed by ICRP based on (i) the current understanding of the science of radiation exposures and effects and (ii) value judgements. These value judgements take into account societal expectations, ethics, and experience gained in application of the system.
The work of the commission centres on the operation of five main committees:
- Committee 1 Radiation effects committee
- The risk of induction of cancer and heritable disease (stochastic effects) together with the underlying mechanisms of radiation action; also, the risks,severity, and mechanisms of induction of tissue/organ damage and developmental defects (deterministic effects).
- Committee 2 Doses from radiation exposure
- Development of dose coefficients for the assessment of internal and external radiation exposure, development of reference biokinetic and dosimetric models, and reference data for workers and members of the public.
- Committee 3 Protection in medicine
- Concerned with protection of persons and unborn children when ionising radiation is used for medical diagnosis, therapy, or for biomedical research; also, assessment of the medical consequences of accidental exposures.
- Committee 4 Application of the commission’s recommendations
- Concerned with providing advice on the application of the recommended system of protection in all its facets for occupational and public exposure. It also acts as the major point of contact with other international organisations and professional societies concerned with protection against ionising radiation.
- Committee 5 Protection of the environment
- Concerned with radiological protection of the environment. It aims to ensure that the development and application of approaches to environmental protection are compatible with those for radiological protection of man, and with those for protection of the environment from other potential hazards.[2]
Supporting these committees are task groups and working parties.
The ICRP's key output is the production of regular publications disseminating information and recommendations through the "Annals of the ICRP". A full list of the publications can be seen here [1]
History
Early dangers
A year after Rontgen’s discovery of X-rays, the American engineer Wolfram Fuchs (1896) gave what is probably the first protection advice, but many early users of X-rays were initially unaware of the hazards and protection was rudimentary or non-existent.
The dangers of radioactivity and radiation were not immediately recognized. The discovery of x‑rays in 1895 led to widespread experimentation by scientists, physicians, and inventors. Many people began recounting stories of burns, hair loss and worse in technical journals as early as 1896. In February of that year, Professor Daniel and Dr. Dudley of Vanderbilt University performed an experiment involving x-raying Dudley's head that resulted in his hair loss. A report by Dr. H.D. Hawks, a graduate of Columbia College, of his suffering severe hand and chest burns in an x-ray demonstration, was the first of many other reports in Electrical Review.[3]
Many experimenters including Elihu Thomson at Thomas Edison's lab, William J. Morton, and Nikola Tesla also reported burns. Elihu Thomson deliberately exposed a finger to an x-ray tube over a period of time and suffered pain, swelling, and blistering.[4] Other effects, including ultraviolet rays and ozone were sometimes blamed for the damage.[5] Many physicians claimed that there were no effects from x-ray exposure at all.[4]
As early as 1902 William Herbert Rollins wrote almost despairingly that his warnings about the dangers involved in careless use of x-rays was not being heeded, either by industry or by his colleagues. By this time Rollins had proved that x-rays could kill experimental animals, could cause a pregnant guinea pig to abort, and that they could kill a fetus.[6] He also stressed that "animals vary in susceptibility to the external action of X-light" and warned that these differences be considered when patients were treated by means of x-rays.
Emergence of international standards - The ICR
It was not until 1925 that the establishment of international radiation protection standards was discussed at the first International Congress of Radiology (ICR).
The second ICR was held in Stockholm in 1928 and ICRU proposed the adoption of the rontgen unit; and the ‘International X-ray and Radium Protection Committee’ (IXRPC) was formed. Rolf Sievert was named Chairman, but a driving force was George Kaye of the British National Physical Laboratory.
The committee met for just a day at each of the ICR meetings in Paris in 1931, Zurich in 1934, and Chicago in 1937. At the 1934 meeting in Zurich, the Commission was faced with undue membership interference. The hosts insisted on having four Swiss participants (out of a total of 11 members), and the German authorities replaced the Jewish German member with another of their choice. In response to this, the Commission decided on new rules in order to establish full control over its future membership.
Birth of ICRP
After World War II the increased range and quantity of radioactive substances being handled as a result of military and civil nuclear programmes led to large additional groups of occupational workers and the public being potentially exposed to harmful levels of ionising radiation.
Against this background, the first post-war ICR convened in London in 1950, but only two IXRPC members had survived the war; Lauriston Taylor and Rolf Sievert. Taylor was invited to revive and revise the Commission, and the Commission was now given its present name: the International Commission on Radiological Protection (ICRP). Sievert remained an active member, Sir Ernest Rock Carling (UK) was appointed as Chairman, and Walter Binks (UK) took over as Scientific Secretary because of Taylor’s concurrent involvement with the sister organisation, ICRU.
At that meeting, six sub-committees were established on:
- permissible dose for external radiation
- permissible dose for internal radiation
- protection against X rays generated at potentials up to 2 million volts
- protection against X rays above 2 million volts, and beta rays and gamma rays
- protection against heavy particles, including neutrons and protons
- disposal of radioactive wastes and handling of radioisotopes
The next meeting was in 1956 in Geneva. This was the first time that a formal meeting of the Commission took place independently of the ICR. At this meeting, ICRP became formally affiliated with the World Health Organization (WHO) as a ‘participating non-governmental organisation’.
In 1959, a formal relationship was established with the International Atomic Energy Agency (IAEA), and subsequently with UNSCEAR, the International Labour Office (ILO), the Food and Agriculture Organization (FAO), the International Organization for Standardization (ISO), and UNESCO.
At the meeting in Stockholm in May 1962, the Commission also decided to reorganise the committee system in order to improve productivity and four committees were created:
- C1: Radiation effects;
- C2: Internal exposure;
- C3: External exposure;
- C4: Application of recommendations
After many assessments of committee roles within an environment of increasing workloads and changes in societal emphasis, by 2008 the committee structure had become:
- Committee 1 - Radiation effects Committee
- Committee 2 - Doses from radiation exposure
- Committee 3 - Protection in medicine
- Committee 4 - Application of the Commission’s recommendations
- Committee 5 - Protection of the environment[2]
Evolution of recommendations
The key output of the ICRP and its historic predecessor has been the issuing of recommendations in the form of reports and publications. The contents are made available for adoption by national regulatory bodies to the extent that they wish.
Early recommendations were general guides on exposure and thereby dose limits, and it was not until the nuclear era that a greater degree of sophistication was required.
In the "1951 Recommendations" the commission recommended a maximum permissible dose of 0.5 rontgen in any 1 week in the case of whole-body exposure to X and gamma radiation at the surface, and 1.5 rontgen in any 1 week in the case of exposure of hands and forearms. Maximum permissible body burdens were given for 11 nuclides. At this time it was first stated that the purpose of radiological protection was that of avoiding deterministic effects from occupational exposures, and the principle of radiological protection was to keep individuals below the relevant thresholds.
A first recommendation on restrictions of exposures of members of the general public appeared in the commission’s part of the 1954 Recommendations. It was also stated that ‘since no radiation level higher than the natural background can be regarded as absolutely ‘‘safe’’, the problem is to choose a practical level that, in the light of present knowledge, involves a negligible risk’. However, the Commission had not rejected the possibility of a threshold for stochastic effects. At this time the rad and rem were introduced for absorbed dose and RBE-weighted dose respectively.
At its 1956 meeting the concept of a controlled area and radiation safety officer were introduced, and the first specific advice was given for pregnant women.
In 1957, there was pressure on ICRP from both the World Health Organisation and UNSCEAR to reveal all of the decisions from its 1956 meeting in Geneva. The final document, the Commission’s 1958 Recommendations was the first ICRP report published by Pergamon Press. The 1958 Recommendations are usually referred to as ‘Publication 1’.
The significance of stochastic effects began to influence the commission’s policy and a new set of recommendations was published as Publication 9 in 1966. However, during development its editors became concerned about the many different opinions on the risk of stochastic effects. The Commission therefore asked a working group to consider these, and their report, Publication 8 (1966), for the first time for the ICRP summarised the current knowledge about radiation risks, both somatic and genetic. Publication 9 then followed, and substantially changed radiation protection emphasis by moving from deterministic to stochastic effects.
In 1977 Publication 26 set out the new system of dose limitation and introduced the three principles of protection:
(a) no practice shall be adopted unless its introduction produces a positive net benefit
(b) all exposures shall be kept as low as reasonably achievable, economic and social factors being taken into account
(c) the doses to individuals shall not exceed the limits recommended for the appropriate circumstances by the Commission
These principles have since become known as justification, optimisation (as low as reasonably achievable), and the application of dose limits. The optimisation principle was introduced because of the need to find some way of balancing costs and benefits of the introduction of a radiation source involving ionising radiation or radionuclides.
The 1977 Recommendations were very concerned with the ethical basis of how to decide what is reasonably achievable in dose reduction. The principle of justification aims to do more good than harm, and that of optimisation aims to maximise the margin of good over harm for society as a whole. They therefore satisfy the utilitarian ethical principle proposed primarily by Jeremy Bentham and John Stuart Mill. Utilitarians judge actions by their overall consequences, usually by comparing, in monetary terms, the relevant benefits obtained by a particular protective measure with the net cost of introducing that measure.
On the other hand, the principle of applying dose limits aims to protect the rights of the individual not to be exposed to an excessive level of harm, even if this could cause great problems for society at large. This principle therefore satisfies the Deontological principle of ethics, proposed primarily by Immanuel Kant.
Consequently the concept of the "collective dose" was introduced to facilitate Cost–benefit analysis and to restrict the uncontrolled build-up of exposure to long-lived radio nuclides in the environment. With the global expansion of nuclear reactors and reprocessing it was feared global doses could again reach the levels seen from atmospheric testing of nuclear weapons. So, by 1977, the establishment of dose limits was secondary to the establishment of cost–benefit analysis and use of collective dose.
During the 1980s, there were re-evaluations of the survivors of the atomic bombing at Hiroshima and Nagasaki, partly due to revisions in the dosimetry. The risks of exposure were claimed to be higher than those used by ICRP, and pressures began to appear for a reduction in dose limits.
By 1989, the commission had itself revised upwards its estimates of the risks of carcinogenesis from exposure to ionising radiation. The following year, it adopted its 1990 Recommendations (ICRP, 1991) for a ‘system of radiological protection’. The principles of protection recommended by the Commission were still based on the general principles given in Publication 26. However there were important additions which weakened the link to cost benefit analysis and collective dose, and strengthened the protection of the individual, which reflected changes in societal values:
(a) No practice involving exposures to radiation should be adopted unless it produces sufficient benefit to the exposed individuals or to society to offset the radiation detriment it causes. (The justification of a practice)
(b) In relation to any particular source within a practice, the magnitude of individual doses, the number of people exposed, and the likelihood of incurring exposures where these are not certain to be received should all be kept as low as reasonably achievable, economic and social factors being taken into account. This procedure should be constrained by restrictions on the doses to individuals (dose constraints), or on the risks to individuals in the case of potential exposures (risk constraints) so as to limit the inequity likely to result from the inherent economic and social judgements. (The optimisation of protection)
(c) The exposure of individuals resulting from the combination of all the relevant practices should be subject to dose limits, or to some control of risk in the case of potential exposures. These are aimed at ensuring that no individual is exposed to radiation risks that are judged to be unacceptable from these practices in any normal circumstances.
In the 21st century, the latest overall recommendations on an international system of radiological protection appeared. ICRP Publication 103(2007), after two phases of international public consultation, has resulted in more continuity than change. Some recommendations remain because they work and are clear, others have been updated because understanding has evolved, some items have been added because there has been a void, and some concepts are better explained because more guidance is needed.[7]
Radiation quantities
In collaboration with the ICRU, the commission has assisted in defining the use of many of the dose quantities in the accompanying diagram.
The table below shows the number of different units for various quantities and is indicative of changes of thinking in world metrology, especially the movement from cgs to SI units.[8]
Quantity | Name | Symbol | Unit | Year | System |
---|---|---|---|---|---|
Exposure (X) | röntgen | R | esu / 0.001293 g of air | 1928 | non-SI |
Absorbed dose (D) | erg•g−1 | 1950 | non-SI | ||
rad | rad | 100 erg•g−1 | 1953 | non-SI | |
gray | Gy | J•kg−1 | 1974 | SI | |
Activity (A) | curie | Ci | 3.7 × 1010 s−1 | 1953 | non-SI |
becquerel | Bq | s−1 | 1974 | SI | |
Dose equivalent (H) | röntgen equivalent man | rem | 100 erg•g−1 | 1971 | non-SI |
sievert | Sv | J•kg−1 | 1977 | SI | |
Fluence (Φ) | (reciprocal area) | cm−2 or m−2 | 1962 | SI (m−2) |
Although the United States Nuclear Regulatory Commission permits the use of the units curie, rad, and rem alongside SI units,[9] the European Union European units of measurement directives required that their use for "public health ... purposes" be phased out by 31 December 1985.[10]
See also
- Journal of Radiological Protection
- gray (unit) - Physical dose unit, used for comparison of deterministic health effect
- International Radiation Protection Association
- International Commission on Radiation Units and Measurements
- National Council on Radiation Protection and Measurements of the United States
- sievert - Biological dose unit, used for comparison of stochastic health effect
- Society for Radiological Protection - the IRPA-affiliated national organisation for UK
- William Herbert Rollins - Radiation protection pioneer,and the first to conduct controlled experiments into the hazards of X-rays.
References
- ^ Clarke, R.H.; J. Valentin (2009). "The History of ICRP and the Evolution of its Policies" (PDF). Annals of the ICRP. ICRP Publication 109. 39 (1): 75–110. doi:10.1016/j.icrp.2009.07.009. Retrieved 12 May 2012.
- ^ a b Abridged from Clarke, R.H.; J. Valentin (2009). "The History of ICRP and the Evolution of its Policies" (PDF). Annals of the ICRP. ICRP Publication 109. 39 (1): 75–110. doi:10.1016/j.icrp.2009.07.009. Retrieved 12 May 2012.
- ^ Sansare, K.; Khanna, V.; Karjodkar, F. (2011). "Early victims of X-rays: a tribute and current perception". Dentomaxillofacial Radiology. 40 (2): 123–125. doi:10.1259/dmfr/73488299. ISSN 0250-832X. PMC 3520298. PMID 21239576.
- ^ a b Ronald L. Kathern and Paul L. Ziemer, he First Fifty Years of Radiation Protection, physics.isu.edu
- ^ Hrabak, M.; Padovan, R. S.; Kralik, M.; Ozretic, D.; Potocki, K. (July 2008). "Nikola Tesla and the Discovery of X-rays". RadioGraphics. 28 (4): 1189–92. doi:10.1148/rg.284075206. PMID 18635636.
- ^ Geoff Meggitt (2008), Taming the Rays - A history of Radiation and Protection., Lulu.com, ISBN 978-1-4092-4667-1
- ^ Abridged from: Clarke, R.H.; J. Valentin (2009). "The History of ICRP and the Evolution of its Policies" (PDF). Annals of the ICRP. ICRP Publication 109. 39 (1): 75–110. doi:10.1016/j.icrp.2009.07.009. Retrieved 12 May 2012.
- ^ "International Commission on Radiation Units and Measurements" (PDF). International Commission on Radiation Units and Measurements. 14 March 2012. Retrieved 1 June 2012.
- ^ 10 CFR 20.1004. US Nuclear Regulatory Commission. 2009.
- ^ The Council of the European Communities (1979-12-21). "Council Directive 80/181/EEC of 20 December 1979 on the approximation of the laws of the Member States relating to Unit of measurement and on the repeal of Directive 71/354/EEC". Retrieved 19 May 2012.
External links
- Eurados - The European radiation dosimetry group
- [2] - "The confusing world of radiation dosimetry" - M.A. Boyd, U.S. Environmental Protection Agency. An account of chronological differences between USA and ICRP dosimetry systems.