Jump to content

Inverse limit: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
+ref: John Rhodes & Benjamin Steinberg. The q-theory of Finite Semigroups. p. 133. ISBN 978-0-387-09780-0.
Line 1: Line 1:
In [[mathematics]], the '''inverse limit''' (also called the '''projective limit''') is a construction which allows one to "glue together" several related objects, the precise manner of the gluing process being specified by morphisms between the objects. Inverse limits can be defined in any [[category (mathematics)|category]].
IOFHJWIPGHVVQADIn [[mathematics]], the '''inverse limit''' (also called the '''projective limit''') is a construction which allows one to "glue together" several related objects, the precise manner of the gluing process being specified by morphisms between the objects. Inverse limits can be defined in any [[category (mathematics)|category]].


== Formal definition ==
== Formal definition for gonzaloooooooooooooo ==


=== Algebraic objects ===
=== Algebraic objects ===
Line 12: Line 12:
We define the '''inverse limit''' of the inverse system ((''A''<sub>''i''</sub>)<sub>''i''∈''I''</sub>, (''f''<sub>''ij''</sub>)<sub>''i''≤ ''j''∈''I''</sub>) as a particular [[subgroup]] of the [[direct product]] of the ''A''<sub>''i''</sub>'s:
We define the '''inverse limit''' of the inverse system ((''A''<sub>''i''</sub>)<sub>''i''∈''I''</sub>, (''f''<sub>''ij''</sub>)<sub>''i''≤ ''j''∈''I''</sub>) as a particular [[subgroup]] of the [[direct product]] of the ''A''<sub>''i''</sub>'s:
:<math>\varprojlim_{i\in I} A_i = \Big\{\vec a \in \prod_{i\in I}A_i \;\Big|\; a_i = f_{ij}(a_j) \mbox{ for all } i \leq j \mbox{ in } I\Big\}.</math>
:<math>\varprojlim_{i\in I} A_i = \Big\{\vec a \in \prod_{i\in I}A_i \;\Big|\; a_i = f_{ij}(a_j) \mbox{ for all } i \leq j \mbox{ in } I\Big\}.</math>
The inverse limit, ''A'', comes equipped with ''natural projections'' π<sub>''i''</sub>: ''A'' → ''A''<sub>''i''</sub> which pick out the ''i''th component of the direct product for each ''i'' in ''I''. The inverse limit and the natural projections satisfy a [[universal property]] described in the next section.
The inverse limit, ''A'', comes equipped with ''natural projections'' π<sub>''i''</sub>: ''A'' → ''A''<sub>''i''</sub> which pickjid-oqhdj9 out the ''i''thWFAWGFlaofmnowNJFIPWHRIh component of the direct product for each ''i'' in ''I''. The inverse limit and the natural projections satisfy a [[universal property]] described in the next section.


This same construction may be carried out if the ''A''<sub>''i''</sub>'s are [[Set (mathematics)|sets]],<ref name="same-construction">John Rhodes & Benjamin Steinberg. The q-theory of Finite Semigroups. p. 133. ISBN 978-0-387-09780-0.</ref> semigroups,<ref name="same-construction"/> topological spaces,<ref name="same-construction"/> [[ring (mathematics)|rings]], [[module (mathematics)|modules]] (over a fixed ring), [[algebra over a field|algebras]] (over a fixed field), etc., and the [[homomorphism]]s are homomorphisms in the corresponding [[category theory|category]]. The inverse limit will also belong to that category.
This same construction may be carried out if the ''A''<sub>''i''</sub>'s are [[Set (mathematics)|sets]],<ref name="same-construction">John Rhodes & Benjamin Steinberg. The q-theory of Finite Semigroups. p. 133. ISBN 978-0-387-09780-0.</ref> semigroups,<ref name="same-construction"/> topological spaces,<ref name="same-construction"/> [[ring (mathematics)|rings]], [[module (mathematics)|modules]] (over a fixed ring), [[algebra over a field|algebras]] (over a fixed field), etc., and the [[homomorphism]]s are homomorphisms in the corresponding [[category theory|category]]. The inverse limit will also belong to that category.

Revision as of 19:56, 9 September 2013

IOFHJWIPGHVVQADIn mathematics, the inverse limit (also called the projective limit) is a construction which allows one to "glue together" several related objects, the precise manner of the gluing process being specified by morphisms between the objects. Inverse limits can be defined in any category.

Formal definition for gonzaloooooooooooooo

Algebraic objects

We start with the definition of an inverse (or projective) system of groups and homomorphisms. Let (I, ≤) be a directed poset (not all authors require I to be directed). Let (Ai)iI be a family of groups and suppose we have a family of homomorphisms fij: AjAi for all ij (note the order) with the following properties:

  1. fii is the identity on Ai,
  2. fik = fij o fjk for all ijk.

Then the pair ((Ai)iI, (fij)ijI) is called an inverse system of groups and morphisms over I, and the morphisms fij are called the transition morphisms of the system.

We define the inverse limit of the inverse system ((Ai)iI, (fij)ijI) as a particular subgroup of the direct product of the Ai's:

The inverse limit, A, comes equipped with natural projections πi: AAi which pickjid-oqhdj9 out the ithWFAWGFlaofmnowNJFIPWHRIh component of the direct product for each i in I. The inverse limit and the natural projections satisfy a universal property described in the next section.

This same construction may be carried out if the Ai's are sets,[1] semigroups,[1] topological spaces,[1] rings, modules (over a fixed ring), algebras (over a fixed field), etc., and the homomorphisms are homomorphisms in the corresponding category. The inverse limit will also belong to that category.

General definition

The inverse limit can be defined abstractly in an arbitrary category by means of a universal property. Let (Xi, fij) be an inverse system of objects and morphisms in a category C (same definition as above). The inverse limit of this system is an object X in C together with morphisms πi: XXi (called projections) satisfying πi = fij o πj for all ij. The pair (X, πi) must be universal in the sense that for any other such pair (Y, ψi) there exists a unique morphism u: YX making all the "obvious" identities true; i.e., the diagram

must commute for all ij. The inverse limit is often denoted

with the inverse system (Xi, fij) being understood.

The inverse limit might not exist in a category. If it does, however, it is unique in a strong sense: given any other inverse limit X′ there exists a unique isomorphism X′ → X commuting with the projection maps.

We note that an inverse system in a category C admits an alternative description in terms of functors. Any partially ordered set I can be considered as a small category where the morphisms consist of arrows ij if and only if ij. An inverse system is then just a contravariant functor IC. And the inverse limit functor is a covariant functor.

Examples

  • The ring of p-adic integers is the inverse limit of the rings Z/pnZ (see modular arithmetic) with the index set being the natural numbers with the usual order, and the morphisms being "take remainder". The natural topology on the p-adic integers is the same as the one described here.
  • The ring of formal power series over a commutative ring R can be thought of as the inverse limit of the rings , indexed by the natural numbers as usually ordered, with the morphisms from to given by the natural projection.
  • Pro-finite groups are defined as inverse limits of (discrete) finite groups.
  • Let the index set I of an inverse system (Xi, fij) have a greatest element m. Then the natural projection πm: XXm is an isomorphism.
  • Inverse limits in the category of topological spaces are given by placing the initial topology on the underlying set-theoretic inverse limit. This is known as the limit topology.
  • Let (I, =) be the trivial order (not directed). The inverse limit of any corresponding inverse system is just the product.
  • Let I consist of three elements i, j, and k with ij and ik (not directed). The inverse limit of any corresponding inverse system is the pullback.

Derived functors of the inverse limit

For an abelian category C, the inverse limit functor

is left exact. If I is ordered (not simply partially ordered) and countable, and C is the category Ab of abelian groups, the Mittag-Leffler condition is a condition on the transition morphisms fij that ensures the exactness of . Specifically, Eilenberg constructed a functor

(pronounced "lim one") such that if (Ai, fij), (Bi, gij), and (Ci, hij) are three projective systems of abelian groups, and

is a short exact sequence of inverse systems, then

is an exact sequence in Ab.

Mittag-Leffler condition

If the ranges of the morphisms of the inverse system of abelian groups (Ai, fij) are stationary, that is, for every k there exists jk such that for all ij : one says that the system satisfies the Mittag-Leffler condition. This condition implies that

For a discussion of the name "Mittag-Leffler" in its relation with the Mittag-Leffler theorem, see this thread on MathOverflow.

The following situations are examples where the Mittag-Leffler condition is satisfied:

  • a system in which the morphisms fij are surjective
  • a system of finite-dimensional vector spaces.

An example where this is non-zero is obtained by taking I to be the non-negative integers, letting Ai = piZ, Bi = Z, and Ci = Bi / Ai = Z/piZ. Then

where Zp denotes the p-adic integers.

Further results

More generally, if C is an arbitrary abelian category that has enough injectives, then so does CI, and the right derived functors of the inverse limit functor can thus be defined. The nth right derived functor is denoted

In the case where C satisfies Grothendieck's axiom (AB4*), Jan-Erik Roos generalized the functor lim1 on AbI to series of functors limn such that

It was thought for almost 40 years that Roos had proved (in Sur les foncteurs dérivés de lim. Applications. ) that lim1 Ai = 0 for (Ai, fij) an inverse system with surjective transition morphisms and I the set of non-negative integers (such inverse systems are often called "Mittag-Leffler sequences"). However, in 2002, Amnon Neeman and Pierre Deligne constructed an example of such a system in a category satisfying (AB4) (in addition to (AB4*)) with lim1 Ai ≠ 0. Roos has since shown (in "Derived functors of inverse limits revisited") that his result is correct if C has a set of generators (in addition to satisfying (AB3) and (AB4*)).

Barry Mitchell has shown (in "The cohomological dimension of a directed set") that if I has cardinality (the dth infinite cardinal), then Rnlim is zero for all nd + 2. This applies to the I-indexed diagrams in the category of R-modules, with R a commutative ring; it is not necessarily true in an arbitrary abelian category (see Roos' "Derived functors of inverse limits revisited" for examples of abelian categories in which lim^n, on diagrams indexed by a countable set, is nonzero for n>1).

The categorical dual of an inverse limit is a direct limit (or inductive limit). More general concepts are the limits and colimits of category theory. The terminology is somewhat confusing: inverse limits are limits, while direct limits are colimits.

See also

Notes

  1. ^ a b c John Rhodes & Benjamin Steinberg. The q-theory of Finite Semigroups. p. 133. ISBN 978-0-387-09780-0.

References

  • Bourbaki, Nicolas (1989), Algebra I, Springer, ISBN 978-3-540-64243-5, OCLC 40551484
  • Bourbaki, Nicolas (1989), General topology: Chapters 1-4, Springer, ISBN 978-3-540-64241-1, OCLC 40551485
  • Mac Lane, Saunders (1998), Categories for the Working Mathematician (2nd ed.), Springer, ISBN 0-387-98403-8 {{citation}}: Unknown parameter |month= ignored (help)
  • Mitchell, Barry (1972), "Rings with several objects", Advances in Mathematics, 8: 1–161, doi:10.1016/0001-8708(72)90002-3, MR 0294454
  • Neeman, Amnon (2002), "A counterexample to a 1962 "theorem" in homological algebra (with appendix by Pierre Deligne)", Inventiones Mathematicae, 148 (2): 397–420, doi:10.1007/s002220100197, MR 1906154
  • Roos, Jan-Erik (1961), "Sur les foncteurs dérivés de lim. Applications", C. R. Acad. Sci. Paris, 252: 3702–3704, MR 0132091
  • Roos, Jan-Erik (2006), "Derived functors of inverse limits revisited", J. London Math. Soc. (2), 73 (1): 65–83, doi:10.1112/S0024610705022416, MR 2197371
  • Section 3.5 of Weibel, Charles A. (1994). An introduction to homological algebra. Cambridge Studies in Advanced Mathematics. Vol. 38. Cambridge University Press. ISBN 978-0-521-55987-4. MR 1269324. OCLC 36131259.