# Lambert (unit)

The lambert (symbol L, la[citation needed] or Lb[citation needed]) is a non-SI metric unit of luminance named for Johann Heinrich Lambert (1728–1777), a Swiss mathematician, physicist and astronomer. A related unit of luminance, the foot-lambert, is used in the lighting, cinema and flight simulation industries. The SI unit is the candela per square metre (cd/m2).

## Definition

1 lambert (L) = ${\displaystyle {\frac {1}{\pi }}}$ candela per square centimetre (0.3183 cd/cm2) or ${\displaystyle {\frac {10^{4}}{\pi }}}$ cd m−2

.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em} cd/m2 (SI unit)≡ nit ≡ lm/m2/sr stilb (sb) (CGS unit)≡ cd/cm2 apostilb (asb)≡ blondel bril skot (sk) lambert (L) 1 10−4 π ≈ 3.142 107 π ≈ 3.142×107 103 π ≈ 3.142×103 10−4 π ≈ 3.142×10−4 0.30482 π≈ 0.2919 104 1 104 π ≈ 3.142×104 1011 π ≈ 3.142×1011 107 π ≈ 3.142×107 π ≈ 3.142 30.482 π ≈ 2919 1 ⁄ π ≈ 0.3183 10−4 ⁄ π ≈ 3.183×10−5 1 107 103 10−4 0.30482 ≈ 0.09290 10−7 ⁄ π ≈ 3.183×10−8 10−11 ⁄ π ≈ 3.183×10−12 10−7 1 10−4 10−11 0.30482×10−7≈ 9.290×10−9 10−3 ⁄ π ≈ 3.183×10−4 10−7 ⁄ π ≈ 3.183×10−8 10−3 104 1 10−7 0.30482×10−3≈ 9.290×10−5 104 ⁄ π ≈ 3183 1 ⁄ π ≈ 0.3183 104 1011 107 1 0.30482×104 ≈ 929.0 1 ⁄ 0.30482 ⁄ π≈ 3.426 1 ⁄ 30.482 ⁄ π≈ 3.426×10−4 1 ⁄ 0.30482≈ 10.76 107 ⁄ 0.30482≈ 1.076×108 103 ⁄ 0.30482≈ 1.076×104 10−4 ⁄ 0.30482≈ 1.076×10−3 1

Other units of luminance:

Quantity Unit Dimension Notes
Name Symbol[nb 1] Name Symbol Symbol[nb 2]
Luminous energy Qv[nb 3] lumen second lm⋅s T J The lumen second is sometimes called the talbot.
Luminous flux, luminous power Φv[nb 3] lumen (= candela steradian) lm (= cd⋅sr) J Luminous energy per unit time
Luminous intensity Iv candela (= lumen per steradian) cd (= lm/sr) J Luminous flux per unit solid angle
Luminance Lv candela per square metre cd/m2 (= lm/(sr⋅m2)) L−2J Luminous flux per unit solid angle per unit projected source area. The candela per square metre is sometimes called the nit.
Illuminance Ev lux (= lumen per square metre) lx (= lm/m2) L−2J Luminous flux incident on a surface
Luminous exitance, luminous emittance Mv lumen per square metre lm/m2 L−2J Luminous flux emitted from a surface
Luminous exposure Hv lux second lx⋅s L−2T J Time-integrated illuminance
Luminous energy density ωv lumen second per cubic metre lm⋅s/m3 L−3T J
Luminous efficacy (of radiation) K lumen per watt lm/W M−1L−2T3J Ratio of luminous flux to radiant flux
Luminous efficacy (of a source) η[nb 3] lumen per watt lm/W M−1L−2T3J Ratio of luminous flux to power consumption
Luminous efficiency, luminous coefficient V 1 Luminous efficacy normalized by the maximum possible efficacy