Jump to content

Laurolactam

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Smokefoot (talk | contribs) at 23:44, 5 August 2016 (cyclododecanone). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Laurolactam
Names
IUPAC name
azacyclotridecan-2-one
Other names
Dodecalactam
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.012.204 Edit this at Wikidata
  • InChI=1S/C12H23NO/c14-12-10-8-6-4-2-1-3-5-7-9-11-13-12/h1-11H2,(H,13,14)
    Key: JHWNWJKBPDFINM-UHFFFAOYSA-N
  • InChI=1/C12H23NO/c14-12-10-8-6-4-2-1-3-5-7-9-11-13-12/h1-11H2,(H,13,14)
    Key: JHWNWJKBPDFINM-UHFFFAOYAS
  • C1CCCCCC(=O)NCCCCC1
Properties
C12H23NO
Molar mass 197.322 g·mol−1
Appearance colourless solid
Melting point 152.5 °C (306.5 °F; 425.6 K)[1]
Boiling point 314.9±10 °C
0.03 wt%
Hazards
Flash point 192 °C
320 to 330 °C
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Laurolactam is an organic compound with the molecular formula (CH2)11C(O)NH. This colorless solid is classified as a lactam. Laurolactam is mainly used as a monomer in engineering plastics, such as nylon-12 and copolyamides.

Synthesis

Although a derivative of 12-aminododecanoic acid, it is made from cyclododecatriene. The triene is hydrogenated to the saturated alkane, cyclododecane. In the process adopted by Evonik Industries, the cycloalkane is oxidized to the ketone cyclododecanone using a boric acid catalyst. The cyclic ketone is converted to the oxime by condensation with hydroxylamine. Under strong acidic conditions and elevated temperatures (115 °C), the oxime converts via a Beckmann rearrangement to laurolactam.

The procedure used by Arkema also begins cyclododecane, which is treated with nitrosyl chloride, resulting in the nitrosocyclododecane. This unstable species undergoes tautomeric transformation to the oxime, which is amenable to Beckmann rearrangement.[2]

Formation of laurolactam
Formation of laurolactam

Uses

Ring opening polymerization is used to polymerize the monomer to nylon-12. The reaction can be brought about with cationic or anionic initiators or with water . Cationic polymerization with acid is believed to involve the initial O-protonation. Nucleophilic attack by the monomer on the reactive protonated nitrogen, followed by successive ring-opening acylation of the primary amine results in the formation of the polyamide.[3]

References

  1. ^ Bradley, Jean-Claude; Williams, Antony; Lang, Andrew (2014): Jean-Claude Bradley Open Melting Point Dataset. figshare. doi:10.6084/m9.figshare.1031637
  2. ^ Schiffer, T.; Oenbrink, G. "Cyclododecanol, Cyclododecanone, and Laurolactam" in Ullman’s Encyclopedia of Industrial Chemistry: Wiley-VCH, 2009. doi:10.1002/14356007.a08_201.pub2
  3. ^ Stevens, M. P. Polymer Chemistry : An Introduction, Oxford University Press: New York, 1999.