Jump to content

Lee algorithm

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by RJFJR (talk | contribs) at 00:38, 26 December 2015 (add heading ==Algorithm==). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Lee algorithm is one possible solution for maze routing problems based on Breadth-first search.

Algorithm

1) Initialisation

 - Select start point, mark with 0
 - i := 0

2) Wave expansion

 - REPEAT
     - Mark all unlabeled neighbors of points marked with i with i+1
     - i := i+1
   UNTIL ((target reached) or (no points can be marked))
Wave Expansion step

3) Backtrace

   - go to the target point
   REPEAT
     - go to next node that has a lower mark than the actual node
     - add this node to path
   UNTIL (start point reached)

4) Clearance

 - Block the path for future wirings
 - Delete all marks

Of course the wave expansion marks only points in the routable area of the chip, not in the blocks or already wired parts, and to minimize segmentation you should keep in one direction as long as possible.

References

  • Wolf, Wayne, Modern VLSI Design, Prentice Hall, pp. 518ff, ISBN 0-13-061970-1
  • Lee, C. Y. (1961), "An Algorithm for Path Connections and Its Applications", IRE Transactions on Electronic Computers, EC-10 (2): 346–365