Jump to content

Lehmann–Scheffé theorem

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Joriki (talk | contribs) at 20:16, 7 September 2015 (Statement: slight correction). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In statistics, the Lehmann–Scheffé theorem is prominent statement, tying together the ideas of completeness, sufficiency, uniqueness, and best unbiased estimation.[1] The theorem states that any estimator which is unbiased for a given unknown quantity and that depends on the data only through a complete, sufficient statistic is the unique best unbiased estimator of that quantity. The Lehmann–Scheffé theorem is named after Erich Leo Lehmann and Henry Scheffé, given their two early papers.[2][3]

If T is a complete sufficient statistic for θ and E(g(T)) = τ(θ) then g(T) is the uniformly minimum-variance unbiased estimator (UMVUE) of τ(θ).

Statement

Let be a random sample from a distribution that has p.d.f (or p.m.f in the discrete case) where is a parameter in the parameter space. Suppose is a sufficient statistic for θ, and let be a complete family. If then is the unique MVUE of θ.

Proof

By the Rao–Blackwell theorem, if is an unbiased estimator of θ then defines an unbiased estimator of θ with the property that its variance is not greater than that of .

Now we show that this function is unique. Suppose is another candidate MVUE estimator of θ. Then again defines an unbiased estimator of θ with the property that its variance is not greater than that of . Then

Since is a complete family

and therefore the function is the unique function of Y with variance not greater than that of any other unbiased estimator. We conclude that is the MVUE.

See also

References

  1. ^ Casella, George (2001). Statistical Inference. Duxbury Press. p. 369. ISBN 0-534-24312-6.
  2. ^ Lehmann, E. L.; Scheffé, H. (1950). "Completeness, similar regions, and unbiased estimation. I.". Sankhyā. 10 (4): 305–340. JSTOR 25048038. MR 0039201.
  3. ^ Lehmann, E.L.; Scheffé, H. (1955). "Completeness, similar regions, and unbiased estimation. II". Sankhyā. 15 (3): 219–236. JSTOR 25048243. MR 0072410.