Jump to content

Limits of computation

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 86.130.245.253 (talk) at 19:14, 16 June 2014 (Removed point re. chaos theory, see comments). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

There are several physical and practical limits to the amount of computation or data storage that can be performed with a given amount of mass, volume, or energy:

  • The Bekenstein bound limits the amount of information that can be stored within a spherical volume to the entropy of a black hole with the same surface area.
  • Thermodynamics limit the data storage of a system based on its energy, number of particles and particle modes. In practice it is a stronger bound than Bekenstein bound.[1]
  • The temperature of the cosmic microwave background radiation gives a practical lower limit to the energy consumed to perform computation of approximately 4kT per state change, where k is the Boltzmann constant and T is the temperature of the background (about 3 kelvins). While a device could be cooled to operate below this temperature, the energy expended by the cooling would offset the benefit of the lower operating temperature.
  • Bremermann's limit is the maximum computational speed of a self-contained system in the material universe, and is based on mass-energy versus quantum uncertainty constraints.
  • Margolus–Levitin theorem sets a bound on the maximum computational speed per unit of energy: 6 × 1033 operations per second per joule.
  • Landauer's principle is a physical principle pertaining to the lower theoretical limit of energy consumption of a computation.
  • Schlock's law is a concept developed after the Rangel curve bound of level computation which governs the levels of "k" in an open system of any calculation where the Boltzmann constant must be applied to determine maximum computational speed.


Several methods have been proposed for producing computing devices or data storage devices that approach physical and practical limits:

  • A cold degenerate star could conceivably be used as a giant data storage device, by carefully perturbing it to various excited states, in the same manner as an atom or quantum well used for these purposes. Such a star would have to be artificially constructed, as no natural degenerate stars will cool to this temperature for an extremely long time. It is also possible that nucleons on the surface of neutron stars could form complex "molecules"[2] which some have suggested might be used for computing purposes,[3] creating a type of computronium based on femtotechnology which would be faster and denser than computronium based on nanotechnology.
  • It may be possible to use a black hole as a data storage and/or computing device, if a practical mechanism for extraction of contained information can be found. Such extraction may in principle be possible (Stephen Hawking's proposed resolution to the black hole information paradox). This would achieve storage density exactly equal to the Bekenstein Bound. Professor Seth Lloyd calculated the computational abilities of an "ultimate laptop" formed by compressing a kilogram of matter into a black hole of radius 1.485 × 10−27 meters, concluding that it would only last about 10−19 seconds before evaporating due to Hawking radiation, but that during this brief time it could compute at a rate of about 5 × 1050 operations per second, ultimately performing about 1032 operations on 1016 bits (~1 PB). Lloyd notes that "Interestingly, although this hypothetical computation is performed at ultra-high densities and speeds, the total number of bits available to be processed is not far from the number available to current computers operating in more familiar surroundings."[4]

See also

References

  1. ^ Sandberg, Anders (22 December 1999). "The Physics of Information Processing Superobjects: Daily Life Among the Jupiter Brains" (PDF). {{cite journal}}: Cite journal requires |journal= (help)
  2. ^ "Life on neutron stars". The Internet Encyclopedia of Science.
  3. ^ Template:Wayback
  4. ^ Lloyd, Seth (2000). "Ultimate physical limits to computation" (PDF). Nature. 406 (6799): 1047–1054. arXiv:quant-ph/9908043. doi:10.1038/35023282. PMID 10984064. {{cite journal}}: Cite has empty unknown parameters: |month= and |coauthors= (help)