Jump to content

List of metal-organic chemical vapour deposition precursors

From Wikipedia, the free encyclopedia

In chemistry, a precursor is a compound that contributes in a chemical reaction and produces another compound, or a chemical substance that gives rise to another more significant chemical product. Since several years metal-organic compounds are widely used as molecular precursors for the chemical vapor deposition process (MOCVD). The success of this method is mainly due to its adaptability and to the increasing interest for the low temperature deposition processes. Correlatively, the increasing demand of various thin film materials for new industrial applications is also a significant reason for the rapid development of MOCVD. Certainly, a wide variety of materials which could not be deposited by the conventional halide CVD process, because halide reactive do not exist or are not volatile, can now be grown by MOCVD. This includes metals and different multi-component materials such as semiconductor and intermetallic compounds as well as carbides, nitrides, oxides, borides, silicides and chalcogenides. Further significant advantages of MOCVD over physical processes are a capability for large scale production, an easier automation, a good conformal coverage, the selectivity and the ability to produce metastable materials.[1]

Thus, much effort has been aimed at the synthesis of new molecular precursors. A productive overview is provided by several exceptional reviews covering fields of MOCVD such as, for instance, epitaxial growth of semiconductor compounds,[2][3][4] and low temperature deposition of metals.[5][6] An overview of metal-organic compounds used for the MOCVD growth of different kind of materials is reported in the following reviews.[7][8][9] This is a list of prominent precursor complexes synthesized thus far with suited properties to be utilized for MOCVD processes.

List

[edit]
Precursor, name, formula CAS No. Chemical stability Themal stability Evaporation T (pressure) Vapour pressure (oC/Torr) Decomposition T Oligommerization Crystal structure Melting point TG data DSC IR spectra NMR data Solubility References
Li(TMHD), Lithium tetramethylheptanedionate, C11H19LiO2 22441-13-0 Decomposes at low pressure and room temperatures,[1] stable under N2 or Ar in sealed contanier and decomposes slowly in contact with moist air and rapidly in contact with water. Above 215 °C under high vacuum it decomposes to form ketenes and carbanions [1] 268-270 °C (atmospehric pressure) NA 265-268 °C Soluble in water [1] D. Saulys, V. Joshkin, M. Khoudiakov, T.F. Kuech, A.B. Ellis, S.R. Oktyabrsky, L. McCaughan, Journal of Crystal Growth 217 (2000) 287-301
Lithium bis(trimethylsilyl)amide, LiN(SiMe3)2 4039- Reacts violently with water.
70-72 °C J. Hamalainen, J. Holopainen, F. Munnik, T. Hatanpaa, M. Heikkila, M. Ritala, and M. Leskela, J Electrochem Soc, 159, A259 (2012).
Lithium bis(ethyldimethylsilyl)amide, [Li(NSiMe2Et)2]2 300585-49-3 122/0.2 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium tert-amyl(i-propyldimethylsilyl)amide 137/0.2 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium bis(3,3-dimethylbutyldimethylsilyl)amide 225/0.9 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium tert-amyl(i-butyldimethylsilyl)amide 145/0.1 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium tert-amyl(n-propyldimethylsilyl)amide 171/0.3 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium bis(n-propyldimethylsilyl)amide 130/0.15 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium bis(i-butyldimethylsilyl)amide 145/0.05 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium tert-amyl(triethylsilyl)amide 157/0.095 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium bis(n-butyldimethylsilyl)amide 145/0.085 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Lithium dimethylamide, (CH3)2NLi 3585-33-9 Catches fire spontaneously if exposed to air and in contact with water releases flammable gas. https://pubchem.ncbi.nlm.nih.gov/compound/Lithium-dimethylamide
Dicyclohexylamidolithium, C12H24Li2N 4111-55-1 High sublimation temperature of 250 °C at which it is also partly thermally decomposing. 250 °C Putkonen, M., Aaltonen, T., Alnes, M., Sajavaara, T., Nilsen, O., & Fjellvåg, H., Journal of Materials Chemistry, 2009, 19(46), 8767
Li(acac), Lithium acetylacetonate, C5H7LiO2 18115-70-3 Hygroscopic Aerosol [1] 250 °C Methanol [1] V. Bornand, Ph. Papet, E. Philippot, Thin Solid Films 1997, 304, 239.
Lithium ethoxide, LiC2H5O 2388-07-0 Self heating and reacts violently with water. Decomposes at 325 °C. LiOEt is insoluble in hydrocarbons, soluble in EtOH (125g/L), α = 6, 4 (MS), ΔHform = -108.6 Powder subliming at 100 °C/vacuo, 150 °C /10-2 torr. https://www.sigmaaldrich.com/catalog/product/aldrich/400203?lang=en
Lithium isopropoxide C3H7LiO 2388-10-5 "Sensitive to moisture and reacts with water. Material decomposes slowly in contact with moist air and rapidly in contact with water, possibly igniting. Avoid contact with moist air, water, acids, alcohols, ketones, esters, carbon dioxide, halogens." Highly flammable, stable under nitrogen or argon in sealed containers
Lithium isopropoxide C3H7LiO
https://pubchem.ncbi.nlm.nih.gov/compound/Lithium-isopropoxide#section=Chemical-and-Physical-Properties
[Li(OtBu)]6, Lithium tert-butoxide, C4H9LiO 1907-33-1 Stable to light, heat, air, carbon dioxide and strong acids. Moisture sentitive, vigorous reaction to water. 108-115 °C [1,2] 283 °C Soluble in toluene, hexane, tetrahydrofuran and methyl tert-butyl ether. "[1] A. Dabirian, Y. Kuzminykh, S. C. Sandu, S. Harada, E. Wagner, P. Brodard, G. Benvenuti, S.Rushworth, P. Muralt, P. Hoffmann, Cryst. Growth Des. 2011, 1, 203.[2] A. Tanaka, K. Miyashita, T. Tashiro, M. Kimura, T. Sukegawa, J. Cryst. Growth 1995, 148, 324.[3] J. Hamalainen, J. Holopainen, F. Munnik, T. Hatanpaa, M. Heikkila, M. Ritala, and M. Leskela, J Electrochem Soc, 159, A259 (2012).[4] Sigma-Aldtritch"
LiTa(OEt)6 127503-04-2 The double alkoxides have sufficient stability using parent alcohol as solvent. Decomposes in contact with water. The thermal stability and volatility vary with respect to the reaction in solid or liquid state. 230/0.2 https://www.chemicalbook.com/ChemicalProductProperty_EN_CB2739827.htm
lithium hexa-iso-propoxytantalate LiTa(i-OPr)6 160-180/0.1 https://www.tms.org/pubs/journals/JOM/9710/Xu/Xu-9710.html
LiTa(t-OBut)6 110-120/0.1 https://www.tms.org/pubs/journals/JOM/9710/Xu/Xu-9710.html
Lithium niobium ethoxide, LiNb(OC2H5)6 Moisture Sensitive Suyama, Y., Yamada, T., Hirano, Y., Takamura, K., & Takahashi, K. (2010). New Synthesis Process of Li, Na and K Niobates from Metal Alkoxides. Advances in Science and Technology, 63, 7–13. doi:10.4028/www.scientific.net/ast.63.7
LiNb(i-OPr)6 <140/0.2 https://www.tms.org/pubs/journals/JOM/9710/Xu/Xu-9710.html
LiNb(t-OBut)6 110-120/0.1 https://www.tms.org/pubs/journals/JOM/9710/Xu/Xu-9710.html
Sodium niobium ethoxide, NaNb(OC2H5)6 Moisture Sensitive Suyama, Y., Yamada, T., Hirano, Y., Takamura, K., & Takahashi, K. (2010). New Synthesis Process of Li, Na and K Niobates from Metal Alkoxides. Advances in Science and Technology, 63, 7–13. doi:10.4028/www.scientific.net/ast.63.7
Sodium cyclopentadienide, C5H5Na 4984-82-1 In contact with water releases flammable gases which may ignite spontaneously. Soluble in THF, benzene or liq. NH3 "1. (a) Fischer, E. O.; Jira, R.; Hafner, K. Z. Naturforsch. 1953, 8b,(b) Fischer, E. O.; Hafner, W.; Stahl, H. O. Z. Anorg. Allg. Chem.1955, 282, 47. 2. Fehlhammer, W. P.; Herrmann, W. A.; O¨ fele, K. In Synthetic Methods of Organometallic and Inorganic Chemistry; Herrmann, W.A., Brauer, G., Eds.; Thieme: Stuttgart, 1997; Vol. 3, p 50. 3.https://spectrabase.com/spectrum/IMGzWBmNgJE. 4.https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-cyclopentadienide#section=GHS-Classification"
Sodium hexafluoroacetylacetonate, NaC5HF6O2 22466-49-5 25/10.3
Sodium hexafluoroacetylacetonate, NaC5HF6O2
230 °C Soluble in water and warm methoxypropanol. 1. Zh. Neorg. Khim. 41, 411, (1996). 2. Rec. Trav. Chim. 114, 242, (1995)
Sodium 2,2,6,6-tetramethylheptane-3,5-dionate, Na(thd) 22466-43-9 Sublimes between 170 and 255 °C
Sodium 2,2,6,6-tetramethylheptane-3,5-dionate, Na(thd)
M. Tiitta, M. Leskäla, E. Nykänen, P. Soinen, L. Niinstö, Thermochim. acta, 1995, 256 (1), 47-53
Sodium 2,2,6,6-tetramethylheptane-3,5-dionate phenantroline, Na(thd)(phen) Sublimes around 210 °C D. Tsymbarenko, I. Korsakov, A. Mankevich, G. Girichev, E. Pelevina, A. Kaul, ECS Trans., 2009, vol.25, Iss.8, 633-638
Sodium 2,2,6,6-tetramethylheptane-3,5-dionate 2,2'-bipiridyne, Na(thd)(bipy) It decomposes at 2 stages namely around 90 °C and 140 °C D. Tsymbarenko, I. Korsakov, A. Mankevich, G. Girichev, E. Pelevina, A. Kaul, ECS Trans., 2009, vol.25, Iss.8, 633-638
Sodium-niobium hexakis(isopropoxide), NaNb(OiPr)6 110-120/0.1
Sodium bis(n-propyldimethylsilyl)amide 213/0.3 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Sodium bis(i-butyldimethylsilyl)amide 189/0.08 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Sodium bis(n-butyldimethylsilyl)amide 231/0.5 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Sodium bis(n-hexyldimethylsill)amide 265/0.3 Broomhall-Dillard, R. N. R., Gordon, R. G., & Wagner, V. A., MRS Proceedings, 1999, 606
Sodium Tert Butoxide, NaOC(CH3)3 865-48-5 Stable at room temperature. Decomposes at 300 °C; stable under N2 or Ar in sealed container and decomposes slowly in contact with moist air and violently in contact with water.[1] At 300 °C [1] sublimation: 254 °C [2] (atmospheric pressure) Information not available Information not available 263 °C [3] "• 30 g/L at 20 °C Medium: tert-butyl alcohol • 70 g/L at 20 °C Medium: Toluene • 130 g/L at 20 °C Medium: Hexane • 380 g/L at 20 °C Medium: Tetrahydrofuran • 50 g/L at 20 °C Medium: xylene • 110 g/L at 20 °C Medium: octane • 220 g/L at 20 °C Medium: Diethyl ether • 450 g/L at 20 °C Medium: Dimethylformamide ":[1] https://www.nwmissouri.edu/naturalsciences/sds/s/Sodium%20tert-butoxide.pdf:[2] https://www.albemarle.com/storage/components/T401225.PDF:[3] Simone Manzini, Núria Huguet, Oliver Trapp, Rocco A. Paciello, Thomas Schaub; "Synthesis of acrylates from olefins and CO2 using sodium alkoxides as bases" Catalysis Today, Volume 281, Part 2, 2017, Pages 379–386, ISSN 0920-5861
Potassium-niobium hexakis(ethoxide), KNb(OEt)6 200/0.8 Suyama, Y., Yamada, T., Hirano, Y., Takamura, K., & Takahashi, K. (2010). New Synthesis Process of Li, Na and K Niobates from Metal Alkoxides. Advances in Science and Technology, 63, 7–13. doi:10.4028/www.scientific.net/ast.63.7
Potassium tert-butoxide (KOtBu) C4H9KO 865-47-4 Sublimes at temperature of 220 °C at pressure of 1 Torr [1] NA 220/1 256 °C-258 °C [2] Soluble in hexane, toluene, diethyl ether and tetrahydrofuran. [1] Feuer et al.Journal of the American Chemical Society1956vol. 78p. 4364,4367

[2] https://www.sigmaaldrich.com/catalog/product/aldrich/156671?lang=de&region=DE [3] Labbow, R., Michalik, D., Reiß, F., Schulz, A. and Villinger, A., 2016. Isolation of Labile Pseudohalogen NSO Species. Angewandte Chemie International Edition, 55(27), pp. 7680–7684.

Potassium 2,2,6,6-tetramethylheptane-3,5-dionate, K(thd), K(tmhd), K(dpm), C11H19KO2 22441-14-1 Hygroscopic
Potassium 2,2,6,6-tetramethylheptane-3,5-dionate, K(thd), K(tmhd), K(dpm), C11H19KO2
195 °C 1. Onoe, A., Tasaki, Y., & Chikuma, K. (2005). Anomalous evaporation characteristics of vitrificated K(DPM) and stable gas supply using disk-shaped K(DPM) precursors for metalorganic chemical vapor deposition. Journal of Crystal Growth, 277(1-4), 546–554. doi:10.1016/j.jcrysgro.2005.01.077 2. www.molbase.com
Potassium 2,2,6,6-tetramethylheptane-3,5-dionate phenantroline, K(thd)(phen) 320-330 °C Oligomerizes with n up to 7 D. Tsymbarenko, I. Korsakov, A. Mankevich, G. Girichev, E. Pelevina, A. Kaul, ECS Trans., 2009, vol.25, Iss.8, 633-638
Bi(phenyl)3,Triphenylbismuth(III), (C6H5)3Bi 603-33-8 No specific storage condition 76-80 °C [1] Sigma
Fe(tmhd)3,Tris(2,2,6,6-tetramethyl-3,5-heptanedionato)iron(III), Fe(C11H19O2)3 14876-47-2
Fe(tmhd)3,Tris(2,2,6,6-tetramethyl-3,5-heptanedionato)iron(III), Fe(C11H19O2)3
164 °C (Atm) (STREM); 179-185 °C (lit.) (Sigma) [1] Sigma [2] Strem
Ni(hfa)2tmeda Evaporation occurs in the 120–200 _C temperature range, with about 2%residue at 350 _C (Atm under N2)" 120–200 °C (Atm pressure under N2) 106,7°C [3] Sergio Battiato, Maria M. Giangregorio, Maria R. Catalano, Raffaella Lo Nigro, Maria Losurdo and Graziella Malandrino; RSC Adv., 2016, 6, 30813–30823
Ni(tta)2tmeda evaporated quantitatively in the 200–330 _C range, with less than 2% residue le at 350_°C. (Atm under N2)

2774(2) A˚ 3, Z = 4, Dc = 1.478 g cm−3

147–149°C to request to request [3] Sergio Battiato, Maria M. Giangregorio, Maria R. Catalano, Raffaella Lo Nigro, Maria Losurdo and Graziella Malandrino; RSC Adv., 2016, 6, 30813–30823
Ni(tmhd)2,Nickel(II) bis(2,2,6,6-tetramethyl-3,5-heptanedionate), Ni(OCC(CH3)3CHCOC(CH3)3)2 14481-08-4 219-223°C (Atm) Maria Losurdo and Graziella Malandrino; RSC Adv., 2016, 6, 30813–30823 [4] Malandrino, Graziella & M S Perdicaro, Laura & Condorelli, Giuseppe & Fragalà, Ignazio & Rossi, Patrizia & Dapporto, Paolo. (2006). Dalton transactions (Cambridge, England : 2003). 8. 1101-6. 10.1039/b511317b.
Ni(acac)2, Nickel(II) acetylacetonate, Ni(C5H7O2)2 3264-82-2 230 - 240°C ethers and aromatic and halogenated hydrocarbons [1] SIGMA [4] Malandrino, Graziella & M S Perdicaro, Laura & Condorelli, Giuseppe & Fragalà, Ignazio & Rossi, Patrizia & Dapporto, Paolo. (2006). Dalton transactions (Cambridge, England : 2003). 8. 1101-6. 10.1039/b511317b.[6] A. Pande, Synlett, 2005, 6, 1042–1043
La(hfa)3diglyme nonhygroscopic, can be handled in air "TGA, 10 ""Clmin under N2) reveal that the sublimation processes takes place in the 115-295°C (residue = 2% to 300°C)" 74-76 °C Ethanol, chloroform, acetone, pentane, toluene and slightly soluble in cyclohexane [7] Graziella Malandrino, Rosalia Licata, Francesco Castelli, Ignazio L. Fragala, and Cristiano Benelli Inorganic Chemistry 1995 34 (25), 6233-6234"
Nb(THD)4, Niobium tetrakis(2,2,6,6-tetramethylheptane-3,5-dionate), C44H76NbO8 41706-15-4 Air and moisture stable, insoluble in water. Under atmospheric pressure and inert atmosphere Li(thd) evaporates completely before ≈270 °C without decomposition. Heating of Nb(thd)4 under similar

conditions results in a solid residue of ≈7% what shows that evaporation and decomposition of this compound goes simultaneously (full decomposition of Nb(thd)4 to Nb2O5 should leave 16.1% residue).[1]

219-220 °C 1,2-dimethoxyethane [1] S. Margueron, A. Bartasyte, V. Plausinaitiene, A. Abrutis, P. Boulet, V. Kubilius, Z. Saltyte, Proc. SPIE 2013, 8626, 862612.
Nb(thd)2Cl3, Bis-dipivaloylmethanate niobium N-chloride, C4H10Cl3NbO2 110615-13-9 Air sensitive. Hydrolyses readily. 170 °C [1] 230 °C [1] S. Jung, N. Imaish, Korean, J. Chem. Eng. 1999, 16, 229.[2] Sigma-Aldritch
Niobium pentakis(methoxide), Nb(OMe)5 Low volatility 200 °C [1] [1] B. J. Curtis, H. R. Brunner, Mater. Res. Bull. 1975, 10, 515.
Nb(OEt)5 , Niobium pentaethoxide, C10H25NbO5 3236-82-6 Air and moisture sensitive. Incompatible with strong acids and strong oxidizing agents. 135-145 °C [1] 100-120 °C [2] 5-6 °C Dry touluene, ethanol. [1] Y. Sakashita, H. Segawa, J. Appl. Phys. 1995, 77, 5995 [2] Y. Akiyama, K. Shitanaka, H. Murakami, Y. S. Shin, M. Yoshida, N. Imaishi, Thin Solid Films

2007, 515, 4975.[3] Sigma-Aldritch

Niobium ethoxide, Nb(OCH2CH3)5 3236-82-6 Stable at room temperature. Stable under N2 or Ar in sealed container and decomposes quickly in contact with moist air. Reacts with water.[1] At 325-350 °C [2] Information not available 21.5 kPa at 500 K [3] At 325-350 °C [2] Dimer At 5 °C [4] Soluble in organic solvents. Decomposes in water.Miscible with organic solvents[4] :[1] https://www.gelest.com/wp-content/uploads/product_msds/AKN590-msds.pdf:[2] Rahtu, Antti (2002). Atomic Layer Deposition of High Permittivity Oxides: Film Growth and In Situ Studies (Thesis). University of Helsinki. ISBN 952-10-0646-3:[3] Niobium(V) ethoxide:[4] Cai Ya-nan, Yang Sheng-hai, Jin Sheng-ming, Yang Hai-ping, Hou Guo-feng, Xia Jiao-yun,"Electrochemical synthesis, characterization and thermal properties of niobium ethoxide"; J. Cent. South Univ. Technol. (2011) 18: 73−77:[5] https://www.chemicalbook.com/ChemicalProductProperty_EN_CB3759592.htm
Pentakis(dimethylamino)tantalum(V), Ta(N(CH3)2)5 19824-59-0 Reacts violently with water
Pentakis(dimethylamino)tantalum(V), Ta(N(CH3)2)5
100oC https://www.sigmaaldrich.com/catalog/product/aldrich/496863?lang=en
Tantalum(V) ethoxide, Ta(OC2H5)5 6074-84-6 21oC https://www.sigmaaldrich.com/catalog/product/aldrich/760404?lang=en
Tris(diethylamido)(tert-butylimido)tantalum(V), (CH3)3CNTa(N(C2H5)2)3 169896-41-7 Reacts violently with water
Tris(diethylamido)(tert-butylimido)tantalum(V), (CH3)3CNTa(N(C2H5)2)3
https://www.sigmaaldrich.com/catalog/product/aldrich/521280?lang=en
Tris(ethylmethylamido)(tert-butylimido)tantalum(V), C13H33N4Ta 511292-99-2 Reacts violently with water
Tris(ethylmethylamido)(tert-butylimido)tantalum(V), C13H33N4Ta
https://www.sigmaaldrich.com/catalog/product/aldrich/j100043?lang=en
Cesium-yttrium tetrakis (1,1,1-trifluoro -5,5-dimethylhexane-2,4-dionate) C32H40O8F12CsY Vikulova, E. S., Zherikova, K. V., Zelenina, L. N., Trubin, S. V., Sysoev, S. V., Semyannikov, Asanov I. V., Morozova N. B., Igumenov, I. K., J. Chem. Thermodynamics 69 (2014) 137–144
Cesium-yttrium tetrakis (2,2,6,6-tetramethyl-3,5-heptanedionate) sublimes at 230 °C A.A. Vorobjev, Course Thesis, http://www.bibliofond.ru/view.aspx?id=555884
Cesium-yttrium tetrakis (hexafluoracetylacetonate) CS[Y(CF3COCHCOCF3)4] M. J. Bennett, F. A. Cotton, P. Legzdins, S. J. Lippard, Inorg. Chem., 1968, 7 (9), pp 1770–1776,
Cesium-lantanum tetrakis (hexafluoracetylacetonate) C, E. Higgins, J. Inorg. Nucl. Chem., 1973, Vol 35, Iss. 6p. 1941–1944
Cesium-europium tetrakis (hexafluoracetylacetonate) [i] C, E. Higgins, J. Inorg. Nucl. Chem., 1973, Vol 35, Iss. 6p. 1941–1944 [ii] J. H. Burns, M. D. Danford, Inorg. Chem., 1969, 8 (8), pp 1780–1784, doi:10.1021/ic50078a048,
Rubidium acetylacetonate RbC5H7O2 66169-93-5 melting point: 200 °C C.R. Bhattacharjee, M. Bhattacharjee; M.K. Chaudhuri, H. Sangchungnunga, J. Chem. Res. Synopses, 1991, no9, pp. 250–251
Rubidium 2,2,6,6-tetramethylheptane-3,5-dionate C11H19O2Rb 166439-15-2 Rb(thd) was found to be completely insoluble in supercritical CO2 (0 mol/L) under these conditions: 100-200bar/ 60 °C O. Aschenbrenner, S. Kemper, N. Dahmen, K. Schaber, E. Dinjus, J. Supercritical Fluids, 2007, Vol.41, Iss.2, p. 179–186
Rubidium trimethysilyloxide sublimes at 80 °C/ 10-6 Torr and decomposes at 140 °C
Rubidium isopropoxide Rb(OiPr) sublimes under deep vacuum (10-6 Torr) despite its polymeric nature, surprisingly it sublimes at higher temperature (200 °C)
Rubidium tert-butoxide Rb(OtBu) sublimable at 185-200 °C/ 10-2 Torr. M.H. Chisholm, S.R. Drake, A.A. Naiini, W.E. Streib, Polyhedron, 1991, Vol. 10, Iss.3, p. 337–345
Dimethyl aluminum acetylacetonate (CH3)2Al(C5H7O2) G. A. Battiston, G. Carta, G. Cavinato, R. Gerbasi, M. Porchia G. Rossetto, Chem.Vapor.Dep., 2001, Vol.7, Issue2, Pages 69–74
Diethyl aluminum acetylacetonate G. A. Battiston, G. Carta, G. Cavinato, R. Gerbasi, M. Porchia G. Rossetto, Chem.Vapor.Dep., 2001, Vol.7, Issue2, Pages 69–74
Diisobutyl aluminum acetylacetonate G. A. Battiston, G. Carta, G. Cavinato, R. Gerbasi, M. Porchia G. Rossetto, Chem.Vapor.Dep., 2001, Vol.7, Issue2, Pages 69–74
Dimethylamine alane NH(CH3)2 · AlH3
Trimethylamine alane AlH3 · N(CH3)3 16842-00-5 /www.sigmaaldrich.com/catalog/product/aldrich/455792
Triethylamine alane Triethylamine alane (TEAA) decomposes on an Al(111) single crystal surface at temperatures above - 310 K Dubois, L. H., Zegarski, B. R., Gross, M. E., & Nuzzo, R. G. 1991, Surface Science, 244(1-2), 89–95.
Dimethylethylamine alane C2H5N(CH3)2 · AlH3 124330-23-0 www.sigmaaldrich.com/catalog/product/aldrich/400386?lang=it&region=IT
Dimethylaluminum hydride (CH3)2AlH 865-37-2 www.americanelements.com/dimethylaluminum-hydride-865-37-2#:~:text=Dimethylaluminum%20Hydride%20is%20one%20of,portable%20sources%20of%20hydrogen%20gas.
Di-iso-butylaluminum hydride [(CH3)2CHCH2]2AlH 1191-15-7 /www.sigmaaldrich.com/catalog/product/aldrich/190306
Calcium bis(cyclopentadienyl) (calcocene) C10H10Ca PubChem CID: 100977887 pubchem.ncbi.nlm.nih.gov/compound/Bis_2_4-cyclopentadienyl_-calcium
Calcium bis(isopropylcyclopentadienyl) [(C3H7)3C5H2]2Ca · (CH3OCH2)2 ereztech.com/product/bistri-isopropylcyclopentadienylcalcium-12-dimethoxyethane-adduct-n-a/
calcium bis[bis(trimethylsilyl)amide C12H36CaN2Si4 ChemSpider ID: 9243563 /www.chemspider.com/Chemical-Structure.9243563.html
calcium bis[bis(trimethylsilyl)amide dimethoxyethane Matthias. Westerhausen, Inorganic Chemistry 1991 30 (1), 96-101
calcium bis[bis(trimethylsilyl)amide tetrahydrofuran Matthias. Westerhausen, Inorganic Chemistry 1991 30 (1), 96-101
Calcium bis(acetylacetonate) Ca(CH3COCHCOCH3)2 19372-44-2 Melting point >280 °C www.americanelements.com/calcium-acetylacetonate-19372-44-2
Calcium bis(hexafluoracetylacetonate) tetraglyme [i] Malandrino, G., Castelli, F., & Fragalà, I. L., Inorganica Chimica Acta, 1994, 224(1-2), 203–207. [ii] D.M. Tsymbarenko et al. / Polyhedron 134 (2017) 246–256
Calcium bis(2,2,6,6-tetramethyl-3,5-heptanedonate) Ca(OCC(CH3)3CHCOC(CH3)3)2 118448-18-3 221-224 °C www.sigmaaldrich.com/catalog/product/aldrich/362956?lang=it&region=IT
Calcium 1,1,1,2,2,3,3,7,7,8,8,9,9,9-tetradecafluorononane-4,6-dionate monohydrate Simon C. Thompson, David J. Cole-hamilton, Douglas D. Gilliland, Michael L. Hitchman, John C. Barnes, Advanced Materials for Optics and Electronics, Volume 1, Issue 2, pages 81–97, April 1992
Calcium bis(tert-butyl)dimethylketiminate El-Kaderi, H. M., Heeg, M. J., & Winter, C. H., Organometallics, 23(21), 2004, 4995–5002.
Calcium bis(isopropyl)dimethylketiminate El-Kaderi, H. M., Heeg, M. J., & Winter, C. H., Organometallics, 23(21), 2004, 4995–5002.
Chromium (III) 2-ethylhexanoate C24H45CrO6 3444-17-5 www.chemicalbook.com/ChemicalProductProperty_EN_CB5738861.htm
Chromium (III) diethyldithiocarbamate Sedlacek, J., Martins, L. M. D. R. S., Danek, P., Pombeiro, A. J. L., & Cvek, B., Journal of Applied Biomedicine, 2014, 12(4),
Chromium tris(acetylacetonate) Cr(C5H7O2)3 21679-31-2 www.sigmaaldrich.com/catalog/product/aldrich/574082?lang=it&region=IT
Chromium tris(trifluoroacetylacetonate) Cr(C5H4F3O2)3 14592-89-3 /www.sigmaaldrich.com/catalog/product/aldrich/495697?lang=it&region=IT
Chromium tris(hexafluoroacetylacetonate) Cr(CF3COCHCOCF3)3 14592-80-4 www.americanelements.com/chromium-iii-hexafluoroacetylacetonate-14592-80-4
hromium tris(2,2,6,6-tetramethyl-3,5-heptanedionate) Cr(OCC(CH3)3CHCOC(CH3)3)3 14434-47-0 www.sigmaaldrich.com/catalog/product/aldrich/468223?lang=it&region=IT
Dysprosium tris(acetylacetonate) Dy(C5H7O2)3• xH2O 18716-76-2 www.americanelements.com/dysprosium-acetylacetonate-18716-76-2#:~:text=Dysprosium%20Acetylacetonate%20is%20one%20of,energy%20and%20water%20treatment%20applications.
Dysprosium tris(2,2,6,6-tetramethyl-3,5-heptanedionate) Dy(C11H19O2)3 15522-69-7 www.americanelements.com/tris-2-2-6-6-tetramethyl-3-5-heptanedionato-dysprosium-iii-15522-69-7
Dysprosium tris(6-ethyl-2,2-dimethyl-3,5-decanedionate) Dy(OCC(CH3)3CHCOCF2CF2CF3)3 18323-98-3 www.sigmaaldrich.com/catalog/product/aldrich/237280?lang=it&region=IT
Dysprosium tris(isopropoxide) Dy(OC3H7)3 6742-68-3 www.americanelements.com/dysprosium-iii-isopropoxide-6742-68-3
Dysprosium tris(1-methoxy-2-methyl-2-propanolate) Van Elshocht, S., Lehnen, P., Seitzinger, B., Abrutis, A., Adelmann, C., Brijs, B., ... Heyns, M., Journal of The Electrochemical Society, 153(9), 2006

References

[edit]
  1. ^ a b c d e f g h i j k l m n o p q r s t u v w x y Jones, Anthony C; Hitchman, Michael L, eds. (22 December 2008). Chemical Vapour Deposition. RSC Publishing. doi:10.1039/9781847558794. ISBN 9780854044658.
  2. ^ a b c d e f g h i j k l m Stringfellow, G. B. (July 1988). "Non-hydride group V sources for OMVPE". Journal of Electronic Materials. 17 (4): 327–335. Bibcode:1988JEMat..17..327S. doi:10.1007/BF02652114.
  3. ^ a b c d e f g h i j Carmalt, C. J.; Basharat, S. (2007). "Overview of Chemical Vapour Deposition". Comprehensive Organometallic Chemistry III | ScienceDirect. Vol. 12. Elsevier. pp. 1–34.
  4. ^ a b c d e f g Maury, Francis (November 1991). "Organometallic molecular precursors for low-temperature MOCVD of III-V semiconductors". Advanced Materials. 3 (11): 542–548. Bibcode:1991AdM.....3..542M. doi:10.1002/adma.19910031104.
  5. ^ a b Fischer, Roland A. (2 June 1995). "The chemistry of metal CVD. Herausgegeben vonT. T. Kodas undM. J. Hampden-Smith. VCH Verlagsgesellschaft, Weinheim, 1994. 538 S., geb. 228.00 DM. – ISBN 3-527-29071-0". Angewandte Chemie. 107 (11): 1366–1367. Bibcode:1995AngCh.107.1366F. doi:10.1002/ange.19951071132.
  6. ^ a b Vahlas, Constantin (February 2010). "Chemical vapor deposition of metals: From unary systems to complex metallic alloys". In Esther Belin-Ferré (ed.). Surface Properties and Engineering of Complex Intermetallics. Book Series on Complex Metallic Alloys. Vol. 3. pp. 49–81. Bibcode:2010spec.book.....B. doi:10.1142/7733. ISBN 9789814304771.
  7. ^ a b Devi, Anjana (December 2013). "'Old Chemistries' for new applications: Perspectives for development of precursors for MOCVD and ALD applications". Coordination Chemistry Reviews. 257 (23–24): 3332–3384. doi:10.1016/j.ccr.2013.07.025.
  8. ^ Condorelli, Guglielmo G.; Malandrino, Graziella; Fragalà, Ignazio L. (July 2007). "Engineering of molecular architectures of β-diketonate precursors toward new advanced materials". Coordination Chemistry Reviews. 251 (13–14): 1931–1950. doi:10.1016/j.ccr.2007.04.016.
  9. ^ Malandrino, Graziella; Fragalà, Ignazio L. (June 2006). "Lanthanide "second-generation" precursors for MOCVD applications: Effects of the metal ionic radius and polyether length on coordination spheres and mass-transport properties". Coordination Chemistry Reviews. 250 (11–12): 1605–1620. doi:10.1016/j.ccr.2006.03.017.