Jump to content

Mahler's inequality

From Wikipedia, the free encyclopedia

In mathematics, Mahler's inequality, named after Kurt Mahler, states that the geometric mean of the term-by-term sum of two finite sequences of positive numbers is greater than or equal to the sum of their two separate geometric means:

when xk, yk > 0 for all k.

Proof

[edit]

By the inequality of arithmetic and geometric means, we have:

and

Hence,

Clearing denominators then gives the desired result.

See also

[edit]

References

[edit]