Jump to content

Modus ponendo tollens

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 173.70.33.20 (talk) at 21:59, 29 November 2016 (Undid revision 749429169 by 72.176.252.79 (talk)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Modus ponendo tollens (Latin: "mode that by affirming, denies")[1] is a valid rule of inference for propositional logic, sometimes abbreviated MPT.[2] It is closely related to modus ponens and modus tollens. It is usually described as having the form:

  1. Not both A and B
  2. A
  3. Therefore, not B

For example:

  1. Ann and Bill cannot both win the race.
  2. Ann won the race.
  3. Therefore, Bill cannot have won the race.

As E.J. Lemmon describes it:"Modus ponendo tollens is the principle that, if the negation of a conjunction holds and also one of its conjuncts, then the negation of its other conjunct holds."[3]

In logic notation this can be represented as:

Based on the Sheffer Stroke (alternative denial), "|", the inference can also be formalized in this way:


References

  1. ^ Stone, Jon R. 1996. Latin for the Illiterati: Exorcizing the Ghosts of a Dead Language. London, UK: Routledge:60.
  2. ^ Politzer, Guy & Carles, Laure. 2001. 'Belief Revision and Uncertain Reasoning'. Thinking and Reasoning. 7:217-234.
  3. ^ Lemmon, Edward John. 2001. Beginning Logic. Taylor and Francis/CRC Press: 61.