Moens–Korteweg equation

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In biomechanics, the Moens–Korteweg equation models the relationship between wave speed or pulse wave velocity (PWV) and the incremental elastic modulus of the arterial wall or its distensibility. The equation was derived independently by Adriaan Isebree Moens[1][2] and Diederik Korteweg.[3] It is derived from Newton's second law of motion, using some simplifying assumptions,[4] and reads:

PWV = \sqrt{\dfrac{E_\text{inc} \cdot h}{2r\rho}}

The Moens–Korteweg equation states that PWV is proportional to the square root of the incremental elastic modulus, (Einc), of the vessel wall given constant ratio of wall thickness, h, to vessel radius, r, and blood density, ρ, assuming that the artery wall is isotropic and experiences isovolumetric change with pulse pressure.[5]

References[edit]

  1. ^ Moens, Adr. Isebree (1877). Over de voortplantingssnelheid van den pols [On the speed of propagation of the pulse] (Ph.D. thesis) (in Dutch). Leiden, The Netherlands: S.C. Van Doesburgh. 
  2. ^ Moens, A. Isebree (1878). Die Pulskurve [The Pulse Curve] (in German). Leiden, The Netherlands: E.J. Brill. OCLC 14862092. 
  3. ^ Korteweg, D.J. (1878). "Über die Fortpflanzungsgeschwindigkeit des Schalles in Elastischen Röhren". Annalen der Physik 241 (12): 525–542. Bibcode:1878AnP...241..525K. doi:10.1002/andp.18782411206. 
  4. ^ Milnor, William R. (1982). Hemodynamics. Baltimore: Williams & Wilkins. ISBN 0-683-06050-3. 
  5. ^ Gosling, R.G.; Budge, M.M. (2003). "Terminology for Describing the Elastic Behavior of Arteries". Hypertension 41 (6): 1180–1182. doi:10.1161/01.HYP.0000072271.36866.2A. 

Further reading[edit]

  • McDonald, Donald A.; Nichols, Wilmer W.; O'Rourke, Michael J.; Hartley, Craig (1998). McDonald's Blood Flow in Arteries, Theoretical, experimental and clinical principles (4th ed.). London: Arnold. ISBN 0-340-64614-4. .
  • Tijsseling A.S., Anderson A. (2012) "A. Isebree Moens and D.J. Korteweg: on the speed of propagation of waves in elastic tubes", BHR Group, Proc. of the 11th Int. Conf. on Pressure Surges (Editor Sandy Anderson), Lisbon, Portugal, October 2012, pp. 227–245, ISBN 978-1-85598-133-1.