Jump to content

Monocular

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by DavidPaygate (talk | contribs) at 17:34, 24 November 2016 (Design). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Galilean type Soviet-made miniature 2.5 × 17.5 monocular.
Diagram of a monocular using a Schmidt-Pechan prism.
1 - Ojective lens 2 - Schmidt-Pechan prism 3 - Eyepiece

A monocular is a modified refracting telescope used to magnify the images of distant objects by passing light through a series of lenses and usually prisms, the application of prisms resulting in a lightweight, compact telescope. Volume and weight are less than half those of binoculars of similar optical properties, making it easy to carry, and also proportionally less expensive. Monoculars produce 2-dimensional images, while binoculars add perception of depth (3 dimensions), assuming one has normal binocular vision.

Monoculars are ideally suited to those with vision in only one eye, or where compactness and low weight are important (e.g. hiking). However, monoculars are sometimes preferred where difficulties occur using both eyes through binoculars because of significant eye variation or poor vision in one eye.

A monocular with a straight optical path is relatively long; prisms are normally used to fold the optical path to make an instrument which is much shorter (see the entry on binoculars for details).

Visually impaired people may use monoculars to see objects at distances at which people with normal vision do not have difficulty, e.g., to read text on a chalkboard or projection screen. Applications for viewing more distant objects include natural history, hunting, marine and military. Compact monoculars are also used in art galleries and museums to obtain a closer view of exhibits.

When high magnification, a bright image, and good resolution of distant images are required, a relatively larger instrument is preferred (i.e. a telescope), often mounted on a tripod. A smaller pocket-sized "pocket scope" (i.e. a typical monocular) can be used for less stringent applications. These comments are quantified below.

Whereas there is a huge range of binoculars on the world market, monoculars are less widely available and with a limited choice in the top quality bracket, with some traditionally very high quality optical manufacturers not offering monoculars at all.[1] Today, most monoculars are manufactured in Japan, China, Russia and Germany, with China offering more product variety than most. Prices range widely, from the highest specification designs listed at over £300 down to "budget" offerings at under £10. (As at Feb 2016).

Monocular sizes

As with binoculars and telescopes, monoculars are primarily defined by two parameters: magnification and objective lens diameter, for example, 8x30 where 8 is the magnification and 30 is the objective lens diameter in mm (this is the lens furthest from the eye). An 8x magnification makes the distant object appear to be 8 times larger at the eye. Contemporary monoculars are typically compact and most normally within a range of 4x magnification to 10x, although specialist units outside these limits are available. Variable magnification or zoom is sometimes provided but has drawbacks as will be outlined further and is not normally found on the top quality monoculars. Objective lens diameter is typically in the range 20mm to 42mm. Care is needed in interpreting some monocular specifications where numerical values are applied loosely and inaccurately - e.g. "39x95", which on a small cheap monocular is more likely to refer to the physical dimensions than the optical parameters. (This is covered in more detail in the section "Interpreting product specifications" below).

As with binoculars, possibly the most common and popular magnification for most purposes is 8x. This represents a usable magnification in many circumstances and is reasonably easy to hold steady without a tripod or monopod. At this magnification, the field of view is relatively wide, making it easier to locate and follow distant objects. For viewing at longer distances, 10x or 12x is preferable if the user is able to hold the monocular steady. However, increasing magnification will compromise the field of view (as will be shown below) and the relative brightness of the object. These and other considerations are major factors influencing the choice of magnification and objective lens diameter. Although very high numerical magnification sounds impressive on paper, in reality, for a pocket monocular it is rarely a good choice because of the very narrow field of view, poor image brightness and great difficulty in keeping the image still when hand holding. Most serious users will eventually come to realise why 8x or 10x are so popular, as they represent possibly the best compromise and are the magnifications most commonly adopted in the very highest quality field monoculars (and binoculars).

Where a monocular ends and a telescope starts is debatable but a telescope is normally used for high magnifications (>20x) and with correspondingly larger objective lens diameter (e.g. 60-90mm). A telescope will be significantly heavier, more bulky and much more expensive than a monocular and due to the high magnifications, will normally need a tripod. Most popular monocular sizes mimic popular binoculars – e.g. 7x25, 8x20, 8x30, 8x42, 10x42.

The highest specification 8x monocular from Opticron - 8x42 DBA

Design

Much of the basic design considerations and related parameters are the same as for binoculars and are covered in that entry, but some expanded comments have been added where appropriate:

  • Prism type – porro or roof
  • Lens & prism coating (the quality of coating can significantly affect light transmission and image brightness and in the highest specifications is proportionally more expensive)
  • Exit pupil

Exit pupil is defined as the diameter of the objective lens divided by the magnification and expressed in mm. (e.g. a 8x40 will give an exit pupil diameter of 5mm). For a given situation, the greater the exit pupil, the better the light transmission into the eye. Hence a large objective lens with a low magnification will give good light admission, especially important in deteriorating light conditions. The classic 7x50 marine binocular or monocular is ideally suited to low light conditions with its relatively large exit pupil diameter of 7.1mm and a realistic magnification which is practical on a moving boat. However, the exit pupil should be considered in relationship with the human eye pupil diameter. If the exit pupil of the chosen instrument is greater than the human eye pupil then there will be no benefit, as the eye will be the limiting factor in light admission. In effect, the extra light gathering potential is wasted. This is a consideration as one ages, because human eye pupil dilation range diminishes with age,[2][3] as shown as an approximate guide in the table below.

Average eye pupil dia change
versus age
Age
(yrs.)
Day
Pupil (mm)
Night
Pupil (mm)
20 4.7 8
30 4.3 7
40 3.9 6
50 3.5 5
60 3.1 4.1
70 2.7 3.2
80 2.3 2.5
  • Twighlight factor (related to magnification and objective lens diameter and is a guide to the ability to see detail at low light conditions and does not necessarily indicate brightness)
  • Transmittance (the % of light transmitted through the monocular, indicating brightness, and will be over 90% in quality instruments)
  • Field of view (important in being able to see a wide panorama and not appearing to be looking down a tunnel).

Field of view (fov) and magnification are related; for a given situation, fov increases with decreasing magnification and vice versa. This applies to monoculars, binoculars and telescopes. However, this relationship also depends on optical design and manufacture, which can cause some variation. The chart below has been compiled by the author to show the fov/magnification relationship based on best-in-class data, taken both from personal tests and from manufacturers' specifications. Contrary to some belief, it is a myth that binoculars offer a wider field of view than monoculars. For a given specification and manufacturer offering both monocular or binocular options of the same model, the field of view is exactly the same whether monocular or binocular.

Chart of field of view (m @ 1000m) versus magnification based on best-in-class data
  • Water/fog proofing
  • General construction - material (metal, plastic), types of body coating
  • Armoured body protection (to resist knocks and damage in the field)
  • Lens protection/covers (some are integrated, some loose)
  • Eye relief

Eye relief is a particularly important (but often overlooked) parameter for spectacle wearers if the full field of view is to be visible. Although magnification, objective lens diameter and field of view (either in degrees or m @1000m) are often shown on the body of the monocular, eye relief virtually never is (except perhaps to say "long eye relief" or "LER"). Early optics tended to have short eye relief (sub 10mm) but more contemporary designs are now much better. At least 15mm is desirable - ideally nearer 20mm - for spectacle wearers. (See table of eye reliefs below, noting the best in class, Opticron 5x30 at 25mm and Opticron 8x42 DBA at 21mm). Eye relief can seriously compromise the field of view if too short, so even if an optic has a good field of view specification, without an accompanying long eye relief, the benefit of the wide view will not be obtained (again, only applying to spectacle wearers). Good eye relief can greatly be facilitated by the eye lens diameter. The photograph below shows a comparison between two 8x monoculars, the one on the left typical of a 1980s design and with a relatively small eyepiece lens diameter (11mm) and sub 10mm eye relief. The one on the right is more contemporary - from 2016 - and with a relatively large eyepiece diameter (24mm) and approx. 15mm eye relief. This large eyepiece lens not only helps eye relief but also helps to create a wider field of view.

Two 8x monoculars showing eye lens diameter comparison


Two additional aspects, which are particularly relevant in the context of monoculars are:

  • Focusing mechanism

A significant difference between binoculars and monoculars is in the focusing system. Today, binoculars almost universally use a central wheel focusing system, operating on both sides simultaneously. (On some large observation binoculars as well as some older designs, however, individual focusing on each eyepiece can be used). Monoculars, however, employ a variety of different focusing systems, all with pros and cons. These include:

  • A large knurled focusing ring around the body of the monocular[4]
  • A small focusing ring close to the eyepiece[5]
  • A small external focusing wheel alongside and above the monocular[6]
    Asika 8x42 and Visionary 12x50 showing top wheel focusing
  • A small focusing lever[7]
    Opticron Trailfinder 8x25 showing focusing lever
  • A sliding focus button[8]
    Eschenbach 6x16 showing sliding focus button
  • A toggle focus mechanism on top of the monocular[9]
  • A large knurled ring surrounding the objective lens[10]
  • "Dual focus" where there are two focusing rings.

The most common is the focusing ring around the body. This retains the compactness of the unit but requires two hands to operate and does not give particularly fast focusing. In some units, the ring can be stiff to operate.

The small ring near the eyepiece also usually needs two hands to operate and in some designs can interfere with the twist-up eye cup. Being small, it can also be less convenient to operate, especially wearing gloves. The degree of twist from closest focus to infinity varies between manufacturers. Some use a very small twist[11] (about a quarter of a turn) whereas others use a full turn or more. The small degree of twist gives a very fast focus but can be overly sensitive and in some designs too stiff to use single handed. A full turn is a practical compromise.

A focusing wheel tends not to be used on top quality monoculars (with the exception of the Bushnell 10x42HD Legend) but is particularly popular on budget offerings from China. Although it makes the monocular more bulky, it does give very convenient focusing with one hand (via one finger) and is particularly fast and smooth, which is necessary in circumstances where quick, accurate changes of focus are important (e.g. bird watching in a wood).

A focusing lever is not common but is used, for example, on the Opticron Trailfinder.[12] This mechanism provides very quick focusing while retaining compactness but can be stiff and overly sensitive to use and again ideally needs two hands.

Minox and some others use a slider button, rather than a lever, on low magnification, ultra compact designs, pushed side to side, which is also fast but rather sensitive.[13]

Toggle focus is very rarely used (e.g. Carson Bandit 8x25[14] ). It provides a one-handed focus mechanism in a relatively large toggle, making it quick and easy to operate "in the field" with gloves but can be rather over-sensitive and difficult to fine tune.

The knurled ring around the objective lens appears to be a unique feature of the Minox 8x25 Macroscope and claims to provide quick focusing.[15]

Some low budget entry-level monoculars from China claim “dual focusing”, which means focusing by means of twisting either the main body of the monocular, and/or the smaller ring near the eyepiece (referred to as the dioptre adjustment on binoculars). Quite why dual focusing is felt necessary on a monocular is questionable but could be for marketing reasons; there is no real technical benefit with such a system, which is never found on the top-quality monoculars from manufacturers like Opticron, Leica and Zeiss.

  • Zoom or variable magnification

As with binoculars, zoom magnification is sometimes available but is virtually unknown in the best quality units (both binoculars and monoculars) as the optical quality and field of view are seriously compromised. Although zoom systems are widely and successfully used on cameras, for observation optics, zoom systems with any credibility are reserved for top quality spotting scopes[16] and come with a very high price tag. Zoom monoculars are available from some “budget” manufacturers, which sound impressive on paper but often have extreme and unrealistic magnification ranges as well as an extremely narrow field of view.

Some examples of current monoculars by specification

Some examples of current monoculars
price
band
eye relief
mm
FoV
m @1000m
FoV
angle
FoV
apparent
angle
exit pupil
mm
weight
g
body
length
mm
body
dia
mm
Comments
Leica Monovid 8x20 A 15.0 110 6.3 50 2.5 112 98 36 Comes with close-up lens
Opticron 8x42 DBA A 21.0 122 7.0 56 5.3 343 143 52 Very long eye relief
Opticron 10x42 DBA A 19.0 105 6.0 60 4.2 349 143 52
Zeiss Mono 8x20 B 15.0 110 6.3 50 2.5 67 101 ?
Bushnell 10x42HD Legend B 15.2 113 6.5 65 4.2 374 137 ? Quick focus wheel
Opticron 10x42 BGA C 16.0 89 5.1 51 4.2 285 136 43
Opticron 8x32 LE C 16.0 131 7.5 60 4.0 272 139 49
Opticron 4x12G C 14.0 219 12.5 50 3.0 49 58 32 "Gallery scope"
Opticron 5x30 C 25.0 122 7.0 35 6.0 252 139 49 Very long eye relief
Opticron Trailfinder 8x25 D 14.0 119 6.8 54 3.1 131 100 35 Quick focus lever
Asika 8x42 E 17.5 121 6.9 55 5.3 329 135 50 Quick focus wheel
Notes
FoV = field of view (expressed either as m@1000m or as an angle in degrees)
Exit pupil = Objective lens dia in mm divided by magnification
Price bands
  • A - £250-£350
  • B - £150-£249
  • C - £75-£149
  • D - £40-£74
  • E - < £40

(Prices are typical selling prices as at Feb 2016)

Interpreting product specifications

As mentioned previously, product specifications can sometimes be misleading, confusing or incorrect values stated. Such inaccuracies are more commonly found on budget items but have also sometimes been seen from some brand leaders. For those not experienced in interpreting such specifications, it is always wise to try out the item before buying wherever possible. Some of the descriptors needing particular care with include:

  • Basic size (e.g. 8x30). As mentioned earlier, examples are sometimes seen where product physical dimensions or some other arbitrary figures are stated instead of magnification and objective lens diameter. This is very misleading and does not properly describe the product. Examples seen include a “40x60” in a compact monocular, where the objective lens diameter was actually 40mm (and the magnification was certainly not 40x). Another, described as "35x95", was actually a 20x40. Also, in a few cases, the overall diameter of the case surrounding the objective lens is used, rather than the lens itself, thus making it seem the objective lens is bigger than it truly is. Magnifications can also be exaggerated, an example of a claimed 16x in reality being closer to an 8x, with the number "16" probably referring to the eyepiece lens diameter. In this case, the claimed "16x52" was in reality an "8x42". Care is needed with such misleading and exaggerated specifications, more likely to be found on some very low budget items.
  • “Day-night vision" or sometimes just "night vision" is another misleading descriptor commonly seen in the specification of low-end, budget monoculars as it gives the impression the item is a night-vision instrument, effective in darkness, when it clearly is not. True night vision monoculars (or "image intensifiers", as typically used in military applications for example) use an electrical power source for light enhancement and are substantially more expensive and bulky than a comparable normal monocular.
  • Zoom is sometimes stated where there is no zoom facility. Zoom means a variable magnification facility, as often seen on cameras, for example. The term "zoom" or misleading phrases like "power zoom" are used incorrectly when referring to a single magnification optic. Zoom values will always be two numbers separated by a hyphen (e.g. 8-20) and then followed by the objective lens diameter (e.g. 8-20x50). As mentioned elsewhere in this entry, a true zoom facility can be seen on some budget monoculars but with very significant optical limitations.
  • Field of view (fov) specification. This parameter is sometimes stated incorrectly (over-stated) and needs interpreting with care when buying an instrument without first field-testing. It is normally expressed in degrees, m@1000m or ft@1000yds. An approximate conversion from degrees to m@1000m is to multiply degrees by 17.5 which can be used as a check if both values are stated. The author has carried out fov tests on several monoculars and the results shown in the table below. Generally, the manufacturer’s stated figure is accurate within a few % but two were considerably over-stated, one in particular (9x30) by 30%. When reviewing a claimed fov value, reference can be made to the fov/magnification relationship in Design, above. This relationship represents best-in-class and so anything substantially exceeding a fov value from this plot, for a given magnification, should be treated with caution, especially in budget offerings.
Field of view test results from 7 monoculars
claimed (C) actual (A) C/A (%)
6x30 180 160 113
8x25 119 114 104
8x32 131 128 102
8x42 122 122 100
9x30 140 108 130
10x42 89 90 99
12x50 82 85 96

Specialist monoculars

Some monoculars satisfy specialist requirements and include:

Seago 8x42 compass monocular
  • Built-in compass[17]
  • Compact, folding monocular[18]
  • Night vision system (requiring a power source and usually having low magnification)[19]
  • Rangefinder/graticule[20]
  • Gallery scope (low magnification, wide field of view for use in museums and galleries)[21]
    KenMAX 4x12 gallery scope
  • Microscope conversion & ultra-close focus[22]
  • Built-in image stabiliser[23]

See also

References