Pal Maliga
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
Pal Maliga | |
---|---|
Born | |
Scientific career | |
Fields | Agrobacterium engineering, Expression of recombinant proteins in Chloroplast, CRISPR/Cas for organellar genome engineering |
Institutions |
|
Pal Maliga is a plant molecular biologist. He is Distinguished Professor of Plant Biology and Laboratory Director at the Waksman Institute of Microbiology, Rutgers University. He is known for developing the technology of chloroplast genome engineering in land plants and its applications in basic science and biotechnology.
Research
[edit]Chloroplast genome engineering
[edit]The Maliga group in Szeged isolated chloroplast-encoded antibiotic-resistance[1][2][3][4] and herbicide-resistant mutants[5] in cultured tobacco cells and have shown that chloroplast-encoded antibiotic-resistance gives a selective advantage to chloroplasts in cultured cells.[6] The ability to selectively enrich resistant chloroplasts was the foundation for obtaining chloroplast genome-engineered (transplastomic) tobacco plants.[7] Extensive recombination of chloroplast genomes after chloroplast fusion confirmed homologous recombination in chloroplasts,[8][9] providing a template for the design of chloroplast transformation vectors. The Maliga laboratory achieved tobacco (Nicotiana tabacum) chloroplast genome transformation in 1990 by selection for spectinomycin resistance encoded in the 16S rRNA, a process that was made efficient by selection for chimeric antibiotic resistance genes.[10][11][12] The significance of chloroplast genome engineering as a tool to improve photosynthetic efficiency was recognized early on.[13] In arabidopsis (Arabidopsis thaliana) efficient chloroplast transformation required knocking out a nuclear gene.[14] The toolkit for chloroplast genome engineering was completed by post-transformation excision of marker genes using phage site-specific recombinases.[15]
Agrobacterium transformation
[edit]The Maliga team constructed the pPZP Agrobacterium binary vector family,[16] that served as the backbone for the CAMBIA and GATEWAY Agrobacterium vectors. Currently they are engaged in reengineering Agrobacterium for DNA delivery to chloroplasts,[17] so that chloroplast transformation can be achieved by the floral dip protocol.
Chloroplast transcription
[edit]Chloroplast reverse genetics revealed the distinct role of two plastid RNA polymerases.[18][19] The Maliga lab characterised plastid promoters in vivo and in vitro, and identified proteins that are parts of the plastid PEP transcription complex.[20]
Expression of recombinant proteins in chloroplasts
[edit]One of the first biotechnological applications of chloroplast engineering was expression of Bacillus thuringiensis (Bt) crystal toxins genes, yielding 3-5% of the total leaf protein. Importantly, the insecticidal protein could be translated from the bacterial AU-rich mRNA, while for nuclear expression only synthetic GC-rich mRNAs could be used.[21] Since then, the Maliga laboratory developed chloroplast expression tools that yield 25% tetanus subunit vaccine[22] and >45% GFP in tobacco leaves.[23] Their current goal is expression of orally bioavailable recombinant proteins in tobacco and lettuce chloroplasts.
Awards and honors
[edit]- Thomas Alva Edison Patent Award, The Research and Development Council of New Jersey (1999)
- Hungarian Academy of Sciences, External member in the Section of Agricultural Sciences. (2001)
- Inventor of the Year, The New Jersey Inventors Hall of Fame (2011).
- Lawrence Bogorad Award for Excellence in Plant Biology, American Society of Plant Biologists (2016)
- Fellow of The American Association for the Advancement of Science (AAAS) (2016)
References
[edit]- ^ Maliga, P, Sz-Breznovits, A, Marton, L (July 1973). "Streptomycin resistant plants from callus culture of haploid tobacco". Nature New Biology. 244 (131): 29–30. doi:10.1038/NEWBIO244029A0. PMID 4515911. S2CID 26838425.
- ^ Cseplo, A, Maliga, P (November 1982). "Lincomycin resistance, a new type of maternally inherited mutation in Nicotiana plumbaginifolia". Current Genetics. 6 (2): 105–109. doi:10.1007/BF00435208. PMID 24186475. S2CID 7925902.
- ^ Cseplo, A, Maliga, P (1984). "Large scale isolation of maternally inherited lincomycin resistance mutations in diploid Nicotiana plumbaginifolia protoplast cultures". Molecular and General Genetics. 196 (3): 407–412. doi:10.1007/BF00436187. S2CID 24421287.
- ^ Svab Z, Maliga P (August 1991). "Mutation proximal to the tRNA binding region of the Nicotiana plastid 16S rRNA confers resistance to spectinomycin". Molecular and General Genetics. 228 (1–2): 316–319. doi:10.1007/BF00282483. PMID 1832206. S2CID 34949950.
- ^ Cseplo, A, Medgyesy, P, Hideg, E, Demeter, S, Marton, L, Maliga, P (August 1985). "Triazine-resistant Nicotiana mutants from photomixotrophic cell cultures". Molecular and General Genetics. 200 (3): 508–510. doi:10.1007/BF00425742. S2CID 44212543.
- ^ Moll, B, Polsby, L, Maliga, P (December 1989). "Streptomycin and lincomycin resistances are selective plastid markers in cultured Nicotiana cells". Molecular and General Genetics. 221 (2): 245–250. doi:10.1007/BF00261727. S2CID 19879921.
- ^ Maliga, P (June 2004). "Plastid transformation in higher plants". Annual Review of Plant Biology. 55: 289–313. doi:10.1146/ANNUREV.ARPLANT.55.031903.141633. PMID 15377222. S2CID 36725756.
- ^ Medgyesy, P, Fejes, E, Maliga, P (October 1985). "Interspecific chloroplast recombination in a Nicotiana somatic hybrid". Proceedings of the National Academy of Sciences of the United States of America. 82 (20): 6960–6964. Bibcode:1985PNAS...82.6960M. doi:10.1073/PNAS.82.20.6960. PMC 391289. PMID 16593619. S2CID 20080861.
- ^ Fejes, E, Maliga, P (1990). "Extensive homologous chloroplast DNA recombination in the pt14 Nicotiana somatic hybrid". Theoretical and Applied Genetics. 79 (1): 28–32. doi:10.1007/BF00223782. PMID 24226115. S2CID 1575818.
- ^ Svab, Z, Hajdukiewicz, P, Maliga, P (1990). "Stable transformation of plastids in higher plants". Proceedings of the National Academy of Sciences of the United States of America. 87 (21): 8526–8530. Bibcode:1990PNAS...87.8526S. doi:10.1073/PNAS.87.21.8526. PMC 54989. PMID 11607112. S2CID 8024062.
- ^ Svab, Z, Maliga, P (February 1993). "High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene". Proceedings of the National Academy of Sciences of the United States of America. 90 (3): 913–917. Bibcode:1993PNAS...90..913S. doi:10.1073/pnas.90.3.913. PMC 45780. PMID 8381537. S2CID 7281078.
- ^ Carrer, H, Hockenberry, TN, Svab, Z, Maliga, P (October 2004). "Kanamycin resistance as a selectable marker for plastid transformation in tobacco". Molecular and General Genetics. 241 (1–2): 49–56. doi:10.1007/BF00280200. PMID 8232211. S2CID 2291268.
- ^ "Step Seen Toward Altering Photosynthesis". New York Times. November 2, 1990.
- ^ Yu, Q, Lutz, K, Maliga, P (2017). "Efficient plastid transformation in Arabidopsis". Plant Physiology. 175 (1): 186–193. doi:10.1104/pp.17.00857. PMC 5580780. PMID 28739820. S2CID 206339557.
- ^ Lutz, K, Maliga, P (2007). "Construction of marker-free transplastomic plants". Current Opinion in Biotechnology. 18 (2): 107–114. doi:10.1016/J.COPBIO.2007.02.003. PMID 17339108. S2CID 40899963.
- ^ Hajdukiewicz P, Svab Z, Maliga P (September 1994). "The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation". Plant Molecular Biology. 25 (6): 989–994. doi:10.1007/BF00014672. PMID 7919218. S2CID 9877624.
- ^ Matsuoka, A, Maliga, P (2021). "Prospects for Reengineering Agrobacterium tumefaciens for T-DNA delivery to Chloroplasts". Plant Physiology. 186: 215–220. doi:10.1093/plphys/kiab081. PMC 8154051. PMID 33620481. S2CID 232017220.
- ^ Allison, LA, Simon, LD, Maliga, P (1996). "Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants". The EMBO Journal. 15 (11): 2802–2809. doi:10.1002/j.1460-2075.1996.tb00640.x. PMC 450217. PMID 8654377. S2CID 39505448.
- ^ Hajdukiewicz, P, Allison, LA, Maliga, P (1997). "The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids". The EMBO Journal. 16 (13): 4041–4048. doi:10.1093/emboj/16.13.4041. PMC 1170027. PMID 9233813. S2CID 10769603.
- ^ Suzuki, J, Ytterberg, AJ, Beardslee, TA, Allison, LA, vanWijk, KJ, Maliga, P (2004). "Affinity purification of the tobacco plastid RNA polymerase and in vitro reconstitution of the holoenzyme". Plant J. 40 (1): 164–172. doi:10.1111/J.1365-313X.2004.02195.X. PMID 15361150. S2CID 24662704.
- ^ McBride, KE, Svab, Z, Schaaf, DJ, Hogan, PS, Stalker, DM, Maliga, P (1995). "Amplification of a Chimeric Bacillus Gene in Chloroplasts Leads to an Extraordinary Level of an Insecticidal Protein in Tobacco". Bio/Technology. 13 (4): 362–365. doi:10.1038/NBT0495-362. PMID 9634777. S2CID 2154428.
- ^ Tregoning, J, Nixon, P, Kuroda, H, Svab, Z, Clare, S, Bowe, F, Fairweather, N, Ytterberg, J, vanWijk, KJ, Dougan, G, Maliga, P (August 1985). "Expression of tetanus toxin fragment C in tobacco chloroplasts". Nucleic Acids Res. 31 (4): 1174–1179. doi:10.1093/NAR/GKG221. PMC 150239. PMID 12582236. S2CID 15125002.
- ^ Yu Q, Tungsuchat-Huang T, Verma K, Radler MR, Maliga P (August 1985). "Independent translation of ORFs in dicistronic operons, synthetic building blocks for polycistronic chloroplast gene expression". Plant J. 103 (6): 2318–2329. doi:10.1111/tpj.14864. PMID 32497322. S2CID 219328497.