Jump to content

Poussin graph

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Zackmann08 (talk | contribs) at 19:48, 30 October 2016 (removing thumb from infobox per WP:INFOBOXIMAGE). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Poussin graph
Vertices15
Edges39
Radius3
Diameter3
Girth3
Automorphisms2 (Z/2Z)
Chromatic number4
Chromatic index6
PropertiesHamiltonian
Planar
Table of graphs and parameters

In graph theory, the Poussin graph is a particular graph with 15 vertices and 39 edges.

History

In 1879, Alfred Kempe published a proof of the four color theorem, one of the big conjectures in graph theory .[1] While the theorem is true, Kempe's proof is incorrect.. Heawood illustrates it in 1890 [2] with a counter-example, and Vallée Poussin reaches the same conclusion in 1896 with the Poussin graph .[3]

Kempe's (incorrect) proof is based on alternating chains, and as those chains prove useful in graph theory mathematicians remain interested in such counter-examples. More were found later: first, the Errera graph in 1921 [4]  · ,[5] then the Kittell graph in 1935, with 23 vertices ,[6] and finally two minimal counter-examples (the Soifer graph in 1997 and the Fritsch graph in 1998, both of order 9) [7]  · [8]  · .[9]

References

  1. ^ Kempe, A. B. "On the Geographical Problem of Four-Colors." Amer. J. Math. 2, 193–200, 1879.
  2. ^ P. J. Heawood, "Map colour theorem", Quart. J. Pure Appl. Math. 24 (1890), 332–338.
  3. ^ R. A. Wilson, Graphs, colourings and the four-colour theorem, Oxford University Press, Oxford, 2002. MR 2003c:05095 Zbl 1007.05002.
  4. ^ Errera, A. "Du coloriage des cartes et de quelques questions d'analysis situs." Ph.D. thesis. 1921.
  5. ^ Peter Heinig. Proof that the Errera Graph is a narrow Kempe-Impasse. 2007.
  6. ^ Kittell, I. "A Group of Operations on a Partially Colored Map." Bull. Amer. Math. Soc. 41, 407–413, 1935.
  7. ^ A. Soifer, “Map coloring in the victorian age: problems and history”, Mathematics Competitions 10 (1997), 20–31.
  8. ^ R. Fritsch and G. Fritsch, The Four-Color Theorem, Springer, New York, 1998. MR 99i:05079.
  9. ^ Gethner, E. and Springer, W. M. II. « How False Is Kempe's Proof of the Four-Color Theorem? » Congr. Numer. 164, 159–175, 2003.