Jump to content

Problem solving: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 5: Line 5:
The nature of human problem solving methods has been studied by [[psychologist]]s over the past hundred years. There are several methods of studying problem solving, including; [[introspection]], [[behaviorism]], [[simulation]], [[computer modeling]] and [[experiment]].
The nature of human problem solving methods has been studied by [[psychologist]]s over the past hundred years. There are several methods of studying problem solving, including; [[introspection]], [[behaviorism]], [[simulation]], [[computer modeling]] and [[experiment]].


Beginning with the early experimental work of the [[Gestalt psychology|Gestaltist]]s in [[Germany]] (e.g. Duncker, 1935 <ref name=Duncker>{{Wikicite | id= Duncker| reference= Duncker, K. (1935). ''Zur Psychologie des produktiven Denkens'' [The psychology of productive thinking]. Berlin: Julius Springer.}}</ref>), and continuing through the 1960s and early 1970s, research on problem solving typically conducted relatively simple, laboratory tasks (e.g. Duncker's "X-ray" problem; Ewert & Lambert's 1932 "disk" problem, later known as [[Tower of Hanoi]]) that appeared novel to participants (e.g. [[Richard E. Mayer|Mayer]], 1992 <ref name=Mayer>{{Wikicite | id= Mayer| reference= Mayer, R. E. (1992). ''Thinking, problem solving, cognition''. Second edition. New York: W. H. Freeman and Company.}}</ref>). Various reasons account for the choice of simple novel tasks: they had clearly defined optimal solutions, they were solvable within a relatively short time frame, researchers could trace participants' problem-solving steps, and so on. The researchers made the underlying assumption, of course, that simple tasks such as the Tower of Hanoi captured the main properties of "[[Reality|real world]]" problems, and that the cognitive processes underlying participants' attempts to solve simple problems were representative of the processes engaged in when solving "real world" problems. Thus researchers used simple problems for reasons of convenience, and thought generalizations to more complex problems would become possible. Perhaps the best-known and most impressive example of this line of research remains the work by [[Allen Newell]] and [[Herbert Simon]] <ref name=Newell>*{{Wikicite | id= Newell| reference= Newell, A., & Simon, H. A. (1972). ''Human problem solving''. Englewood Cliffs, NJ: Prentice-Hall.}}</ref>.
Beginning with the early experimental work of the [[Gestalt psychology|Gestaltist]]s in [[Germany]] (e.g. Duncker, 1935 <ref name=Duncker>{{Wikicite | id= Duncker| reference= Duncker, K. (1935). ''Zur Psychologie des produktiven Denkens'' [The psychology of productive thinking]. Berlin: Julius Springer.}}</ref>), and continuing through the 1960s and early 1970s, research on problem solving typically conducted relatively simple, laboratory tasks (e.g. Duncker's "X-ray" problem; Ewert & Lambert's 1932 "disk" problem, later known as [[Tower of Hanoi]]) that appeared novel to participants (e.g. [[Richard E. Mayer|Mayer]], 1992 <ref name=Mayer>{{Wikicite | id= Mayer| reference= Mayer, R. E. (1992). ''Thinking, problem solving, cognition''. Second edition. New York: W. H. Anal and Company.}}</ref>). Various reasons account for the choice of simple novel tasks: they had clearly defined optimal solutions, they were solvable within a relatively short time frame, researchers could trace participants' problem-solving steps, and so on. The researchers made the underlying assumption, of course, that simple tasks such as the Tower of Hanoi captured the main properties of "[[Reality|real world]]" problems, and that the cognitive processes underlying participants' attempts to solve simple problems were representative of the processes engaged in when solving "real world" problems. Thus researchers used simple problems for reasons of convenience, and thought generalizations to more complex problems would become possible. Perhaps the best-known and most impressive example of this line of research remains the work by [[Allen Newell]] and [[Herbert Simon]] <ref name=Newell>*{{Wikicite | id= Newell| reference= Newell, A., & Simon, H. A. (1972). ''Human problem solving''. Englewood Cliffs, NJ: Prentice-Hall.}}</ref>.


Simple laboratory-based tasks can be useful in explicating the steps of logic and reasoning that underlie problem solving; however, they omit the complexity and [[Valence (psychology)|emotional valence]] of "real-world" problems. In clinical psychology, researchers have focused on the role of emotions in problem solving (D'Zurilla & Goldfried, 1971; D'Zurilla & Nezu, 1982), demonstrating that poor emotional control can disrupt focus on the target task and impede problem resolution (Rath, Langenbahn, Simon, Sherr, & Diller, 2004). In this conceptualization, human problem solving consists of two related processes: problem orientation, the motivational/attitudinal/affective approach to problematic situations and problem-solving skills, the actual cognitive-behavioral steps, which, if successfully implemented, lead to effective problem resolution. Working with individuals with frontal lobe injuries, [[Neuropsychology|neuropsychologists]] have discovered that deficits in emotional control and reasoning can be remediated, improving the capacity of injured persons to resolve everyday problems successfully (Rath, Simon, Langenbahn, Sherr, & Diller, 2003).
Simple laboratory-based tasks can be useful in explicating the steps of logic and reasoning that underlie problem solving; however, they omit the complexity and [[Valence (psychology)|emotional valence]] of "real-world" problems. In clinical psychology, researchers have focused on the role of emotions in problem solving (D'Zurilla & Goldfried, 1971; D'Zurilla & Nezu, 1982), demonstrating that poor emotional control can disrupt focus on the target task and impede problem resolution (Rath, Langenbahn, Simon, Sherr, & Diller, 2004). In this conceptualization, human problem solving consists of two related processes: problem orientation, the motivational/attitudinal/affective approach to problematic situations and problem-solving skills, the actual cognitive-behavioral steps, which, if successfully implemented, lead to effective problem resolution. Working with individuals with frontal lobe injuries, [[Neuropsychology|neuropsychologists]] have discovered that deficits in emotional control and reasoning can be remediated,thus improving the capacity of injured persons to resolve everyday problems successfully and whether or not they have small penis's (Rath, Simon, Langenbahn, Sherr, & Diller, 2003).
Oli is god
Oli is god



Revision as of 10:59, 6 September 2010

Problem solving is a mental process and is part of the larger problem process that includes problem finding and problem shaping. Considered the most complex of all intellectual functions, problem solving has been defined as higher-order cognitive process that requires the modulation and control of more routine or fundamental skills.[1] Problem solving occurs when an organism or an artificial intelligence system needs to move from a given state to a desired goal state.

Overview

The nature of human problem solving methods has been studied by psychologists over the past hundred years. There are several methods of studying problem solving, including; introspection, behaviorism, simulation, computer modeling and experiment.

Beginning with the early experimental work of the Gestaltists in Germany (e.g. Duncker, 1935 [2]), and continuing through the 1960s and early 1970s, research on problem solving typically conducted relatively simple, laboratory tasks (e.g. Duncker's "X-ray" problem; Ewert & Lambert's 1932 "disk" problem, later known as Tower of Hanoi) that appeared novel to participants (e.g. Mayer, 1992 [3]). Various reasons account for the choice of simple novel tasks: they had clearly defined optimal solutions, they were solvable within a relatively short time frame, researchers could trace participants' problem-solving steps, and so on. The researchers made the underlying assumption, of course, that simple tasks such as the Tower of Hanoi captured the main properties of "real world" problems, and that the cognitive processes underlying participants' attempts to solve simple problems were representative of the processes engaged in when solving "real world" problems. Thus researchers used simple problems for reasons of convenience, and thought generalizations to more complex problems would become possible. Perhaps the best-known and most impressive example of this line of research remains the work by Allen Newell and Herbert Simon [4].

Simple laboratory-based tasks can be useful in explicating the steps of logic and reasoning that underlie problem solving; however, they omit the complexity and emotional valence of "real-world" problems. In clinical psychology, researchers have focused on the role of emotions in problem solving (D'Zurilla & Goldfried, 1971; D'Zurilla & Nezu, 1982), demonstrating that poor emotional control can disrupt focus on the target task and impede problem resolution (Rath, Langenbahn, Simon, Sherr, & Diller, 2004). In this conceptualization, human problem solving consists of two related processes: problem orientation, the motivational/attitudinal/affective approach to problematic situations and problem-solving skills, the actual cognitive-behavioral steps, which, if successfully implemented, lead to effective problem resolution. Working with individuals with frontal lobe injuries, neuropsychologists have discovered that deficits in emotional control and reasoning can be remediated,thus improving the capacity of injured persons to resolve everyday problems successfully and whether or not they have small penis's (Rath, Simon, Langenbahn, Sherr, & Diller, 2003). Oli is god

Europe

In Europe, two main approaches have surfaced, one initiated by Donald Broadbent (1977; see Berry & Broadbent, 1995) in the United Kingdom and the other one by Dietrich Dörner (1975, 1985; see Dörner & Wearing, 1995) in Germany. The two approaches have in common an emphasis on relatively complex, semantically rich, computerized laboratory tasks, constructed to resemble real-life problems. The approaches differ somewhat in their theoretical goals and methodology, however. The tradition initiated by Broadbent emphasizes the distinction between cognitive problem-solving processes that operate under awareness versus outside of awareness, and typically employs mathematically well-defined computerized systems. The tradition initiated by Dörner, on the other hand, has an interest in the interplay of the cognitive, motivational, and social components of problem solving, and utilizes very complex computerized scenarios that contain up to 2,000 highly interconnected variables (e.g., Dörner, Kreuzig, Reither & Stäudel's 1983 LOHHAUSEN project; Ringelband, Misiak & Kluwe, 1990). Buchner (1995) describes the two traditions in detail.

To sum up, researchers' realization that problem-solving processes differ across knowledge domains and across levels of expertise (e.g. Sternberg, 1995) and that, consequently, findings obtained in the laboratory cannot necessarily generalize to problem-solving situations outside the laboratory, has during the past two decades led to an emphasis on real-world problem solving. This emphasis has been expressed quite differently in North America and Europe, however. Whereas North American research has typically concentrated on studying problem solving in separate, natural knowledge domains, much of the European research has focused on novel, complex problems, and has been performed with computerized scenarios (see Funke, 1991, for an overview).

USA and Canada

In North America, initiated by the work of Herbert Simon on learning by doing in semantically rich domains (e.g. Anzai & Simon, 1979; Bhaskar & Simon, 1977), researchers began to investigate problem solving separately in different natural knowledge domains – such as physics, writing, or chess playing – thus relinquishing their attempts to extract a global theory of problem solving (e.g. Sternberg & Frensch, 1991). Instead, these researchers have frequently focused on the development of problem solving within a certain domain, that is on the development of expertise (e.g. Anderson, Boyle & Reiser, 1985; Chase & Simon, 1973; Chi, Feltovich & Glaser, 1981).

Areas that have attracted rather intensive attention in North America include such diverse fields as:

Characteristics of difficult problems

As elucidated by Dietrich Dörner and later expanded upon by Joachim Funke, difficult problems have some typical characteristics that can be summarized as follows:

  • Intransparency (lack of clarity of the situation)
    • commencement opacity
    • continuation opacity
  • Polytely (multiple goals)
    • inexpressiveness
    • opposition
    • transience
  • Complexity (large numbers of items, interrelations and decisions)
  • Dynamics (time considerations)
    • temporal constraints
    • temporal sensitivity
    • phase effects
    • dynamic unpredictability

The resolution of difficult problems requires a direct attack on each of these characteristics that are encountered.

In reform mathematics, greater emphasis is placed on problem solving relative to basic skills, where basic operations can be done with calculators. However some "problems" may actually have standard solutions taught in higher grades. For example, kindergarteners could be asked how many fingers are there on all the gloves of 3 children, which can be solved with multiplication.[5]

Problem-solving techniques

  • Abstraction: solving the problem in a model of the system before applying it to the real system
  • Analogy: using a solution that solved an analogous problem
  • Brainstorming: (especially among groups of people) suggesting a large number of solutions or ideas and combining and developing them until an optimum is found
  • Divide and conquer: breaking down a large, complex problem into smaller, solvable problems
  • Hypothesis testing: assuming a possible explanation to the problem and trying to prove (or, in some contexts, disprove) the assumption
  • Lateral thinking: approaching solutions indirectly and creatively
  • Means-ends analysis: choosing an action at each step to move closer to the goal
  • Method of focal objects: synthesizing seemingly non-matching characteristics of different objects into something new
  • Morphological analysis: assessing the output and interactions of an entire system
  • Reduction: transforming the problem into another problem for which solutions exist
  • Research: employing existing ideas or adapting existing solutions to similar problems
  • Root cause analysis: eliminating the cause of the problem
  • Trial-and-error: testing possible solutions until the right one is found

Problem-solving methodologies

Example applications

Problem solving is of crucial importance in engineering when products or processes fail, so corrective action can be taken to prevent further failures. Perhaps of more value, problem solving can be applied to a product or process prior to an actual fail event ie. a potential problem can be predicted, analyzed and mitigation applied so the problem never actually occurs. Techniques like Failure Mode Effects Analysis can be used to proactively reduce the likelihood of problems occurring. Forensic engineering is an important technique of failure analysis which involves tracing product defects and flaws. Corrective action can then be taken to prevent further failures.

See also

Notes

  1. ^ Goldstein F. C., & Levin H. S. (1987). Disorders of reasoning and problem-solving ability. In M. Meier, A. Benton, & L. Diller (Eds.), Neuropsychological rehabilitation. London: Taylor & Francis Group.
  2. ^ Duncker, K. (1935). Zur Psychologie des produktiven Denkens [The psychology of productive thinking]. Berlin: Julius Springer.
  3. ^ Mayer, R. E. (1992). Thinking, problem solving, cognition. Second edition. New York: W. H. Anal and Company.
  4. ^ *Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.
  5. ^ 2007 Draft, Washington State Revised Mathematics Standard

References

  • Amsel, E., Langer, R., & Loutzenhiser, L. (1991). Do lawyers reason differently from psychologists? A comparative design for studying expertise. In R. J. Sternberg & P. A. Frensch (Eds.), Complex problem solving: Principles and mechanisms (pp. 223-250). Hillsdale, NJ: Lawrence Erlbaum Associates. ISBN 978-0-8058-1783-6
  • Anderson, J. R., Boyle, C. B., & Reiser, B. J. (1985). "Intelligent tutoring systems". Science. 228 (4698): 456–462. doi:10.1126/science.228.4698.456. PMID 17746875.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • Anzai, K., & Simon, H. A. (1979) (1979). "The theory of learning by doing". Psychological Review. 86 (2): 124–140. doi:10.1037/0033-295X.86.2.124. PMID 493441.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  • Beckmann, J. F., & Guthke, J. (1995). Complex problem solving, intelligence, and learning ability. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European Perspective (pp. 177-200). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Berry, D. C., & Broadbent, D. E. (1995). Implicit learning in the control of complex systems: A reconsideration of some of the earlier claims. In P.A. Frensch & J. Funke (Eds.), Complex problem solving: The European Perspective (pp. 131-150). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Bhaskar, R., & Simon, H. A. (1977). Problem solving in semantically rich domains: An example from engineering thermodynamics. Cognitive Science, 1, 193-215.
  • Brehmer, B. (1995). Feedback delays in dynamic decision making. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European Perspective (pp. 103-130). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Brehmer, B., & Dörner, D. (1993). Experiments with computer-simulated microworlds: Escaping both the narrow straits of the laboratory and the deep blue sea of the field study. Computers in Human Behavior, 9, 171-184.
  • Broadbent, D. E. (1977). Levels, hierarchies, and the locus of control. Quarterly Journal of Experimental Psychology, 29, 181-201.
  • Bryson, M., Bereiter, C., Scardamalia, M., & Joram, E. (1991). Going beyond the problem as given: Problem solving in expert and novice writers. In R. J. Sternberg & P. A. Frensch (Eds.), Complex problem solving: Principles and mechanisms (pp. 61-84). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Buchner, A. (1995). Theories of complex problem solving. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European Perspective (pp. 27-63). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Buchner, A., Funke, J., & Berry, D. C. (1995). Negative correlations between control performance and verbalizable knowledge: Indicators for implicit learning in process control tasks? Quarterly Journal of Experimental Psychology, 48A, 166-187.
  • Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55-81.
  • Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). "Categorization and representation of physics problems by experts and novices". Cognitive Science. 5: 121–152. doi:10.1207/s15516709cog0502_2.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • Dörner, D. (1975). Wie Menschen eine Welt verbessern wollten [How people wanted to improve the world]. Bild der Wissenschaft, 12, 48-53.
  • Dörner, D. (1985). Verhalten, Denken und Emotionen [Behavior, thinking, and emotions]. In L. H. Eckensberger & E. D. Lantermann (Eds.), Emotion und Reflexivität (pp. 157-181). München, Germany: Urban & Schwarzenberg.
  • Dörner, D. (1992). Über die Philosophie der Verwendung von Mikrowelten oder "Computerszenarios" in der psychologischen Forschung [On the proper use of microworlds or "computer scenarios" in psychological research]. In H. Gundlach (Ed.), Psychologische Forschung und Methode: Das Versprechen des Experiments. Festschrift für Werner Traxel (pp. 53-87). Passau, Germany: Passavia-Universitäts-Verlag.
  • Dörner, D., Kreuzig, H. W., Reither, F., & Stäudel, T. (Eds.). (1983). Lohhausen. Vom Umgang mit Unbestimmtheit und Komplexität [Lohhausen. On dealing with uncertainty and complexity]. Bern, Switzerland: Hans Huber.
  • Dörner, D., & Wearing, A. (1995). Complex problem solving: Toward a (computer-simulated) theory. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European Perspective (pp. 65-99). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Duncker, K. (1935). Zur Psychologie des produktiven Denkens [The psychology of productive thinking]. Berlin: Julius Springer.
  • Ewert, P. H., & Lambert, J. F. (1932). Part II: The effect of verbal instructions upon the formation of a concept. Journal of General Psychology, 6, 400-411.
  • Eyferth, K., Schömann, M., & Widowski, D. (1986). Der Umgang von Psychologen mit Komplexität [On how psychologists deal with complexity]. Sprache & Kognition, 5, 11-26.
  • Frensch, P. A., & Funke, J. (Eds.). (1995). Complex problem solving: The European Perspective. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Frensch, P. A., & Sternberg, R. J. (1991). Skill-related differences in game playing. In R. J. Sternberg & P. A. Frensch (Eds.), Complex problem solving: Principles and mechanisms (pp. 343-381). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Funke, J. (1991). Solving complex problems: Human identification and control of complex systems. In R. J. Sternberg & P. A. Frensch (Eds.), Complex problem solving: Principles and mechanisms (pp. 185-222). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Funke, J. (1993). Microworlds based on linear equation systems: A new approach to complex problem solving and experimental results. In G. Strube & K.-F. Wender (Eds.), The cognitive psychology of knowledge (pp. 313-330). Amsterdam: Elsevier Science Publishers.
  • Funke, J. (1995). Experimental research on complex problem solving. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European Perspective (pp. 243-268). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Funke, U. (1995). Complex problem solving in personnel selection and training. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European Perspective (pp. 219-240). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Goldstein F. C., & Levin H. S. (1987). Disorders of reasoning and problem-solving ability. In M. Meier, A. Benton, & L. Diller (Eds.), Neuropsychological rehabilitation. London: Taylor & Francis Group.
  • Groner, M., Groner, R., & Bischof, W. F. (1983). Approaches to heuristics: A historical review. In R. Groner, M. Groner, & W. F. Bischof (Eds.), Methods of heuristics (pp. 1-18). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Halpern, Diane F. (2002).Thought & Knowledge. Lawrence Erlbaum Associates. Worldcat Library Catalog
  • Hayes, J. (1980). The complete problem solver. Philadelphia: The Franklin Institute Press.
  • Hegarty, M. (1991). Knowledge and processes in mechanical problem solving. In R. J. Sternberg & P. A. Frensch (Eds.), Complex problem solving: Principles and mechanisms (pp. 253-285). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Heppner, P. P., & Krauskopf, C. J. (1987). An information-processing approach to personal problem solving. The Counseling Psychologist, 15, 371-447.
  • Huber, O. (1995). Complex problem solving as multi stage decision making. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European Perspective (pp. 151-173). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Hübner, R. (1989). Methoden zur Analyse und Konstruktion von Aufgaben zur kognitiven Steuerung dynamischer Systeme [Methods for the analysis and construction of dynamic system control tasks]. Zeitschrift für Experimentelle und Angewandte Psychologie, 36, 221-238.
  • Hunt, E. (1991). Some comments on the study of complexity. In R. J. Sternberg, & P. A. Frensch (Eds.), Complex problem solving: Principles and mechanisms (pp. 383-395). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Hussy, W. (1985). Komplexes Problemlösen - Eine Sackgasse? [Complex problem solving - a dead end?]. Zeitschrift für Experimentelle und Angewandte Psychologie, 32, 55-77.
  • Kay, D. S. (1991). Computer interaction: Debugging the problems. In R. J. Sternberg & P. A. Frensch (Eds.), Complex problem solving: Principles and mechanisms (pp. 317-340). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Kluwe, R. H. (1993). Knowledge and performance in complex problem solving. In G. Strube & K.-F. Wender (Eds.), The cognitive psychology of knowledge (pp. 401-423). Amsterdam: Elsevier Science Publishers.
  • Kluwe, R. H. (1995). Single case studies and models of complex problem solving. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European Perspective (pp. 269-291). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Kolb, S., Petzing, F., & Stumpf, S. (1992). Komplexes Problemlösen: Bestimmung der Problemlösegüte von Probanden mittels Verfahren des Operations Research ? ein interdisziplinärer Ansatz [Complex problem solving: determining the quality of human problem solving by operations research tools - an interdisciplinary approach]. Sprache & Kognition, 11, 115-128.
  • Krems, J. F. (1995). Cognitive flexibility and complex problem solving. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European Perspective (pp. 201-218). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Lesgold, A., & Lajoie, S. (1991). Complex problem solving in electronics. In R. J. Sternberg & P. A. Frensch (Eds.), Complex problem solving: Principles and mechanisms (pp. 287-316). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Mayer, R. E. (1992). Thinking, problem solving, cognition. Second edition. New York: W. H. Freeman and Company.
  • Müller, H. (1993). Komplexes Problemlösen: Reliabilität und Wissen [Complex problem solving: Reliability and knowledge]. Bonn, Germany: Holos.
  • Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.
  • Paradies, M.W., & Unger, L. W. (2000). TapRooT - The System for Root Cause Analysis, Problem Investigation, and Proactive Improvement. Knoxville, TN: System Improvements.
  • Putz-Osterloh, W. (1993). Strategies for knowledge acquisition and transfer of knowledge in dynamic tasks. In G. Strube & K.-F. Wender (Eds.), The cognitive psychology of knowledge (pp. 331-350). Amsterdam: Elsevier Science Publishers.
  • Riefer, D.M., & Batchelder, W.H. (1988). Multinomial modeling and the measurement of cognitive processes. Psychological Review, 95, 318-339.
  • Ringelband, O. J., Misiak, C., & Kluwe, R. H. (1990). Mental models and strategies in the control of a complex system. In D. Ackermann, & M. J. Tauber (Eds.), Mental models and human-computer interaction (Vol. 1, pp. 151-164). Amsterdam: Elsevier Science Publishers.
  • Schaub, H. (1993). Modellierung der Handlungsorganisation. Bern, Switzerland: Hans Huber.
  • Sokol, S. M., & McCloskey, M. (1991). Cognitive mechanisms in calculation. In R. J. Sternberg & P. A. Frensch (Eds.), Complex problem solving: Principles and mechanisms (pp. 85-116). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Stanovich, K. E., & Cunningham, A. E. (1991). Reading as constrained reasoning. In R. J. Sternberg & P. A. Frensch (Eds.), Complex problem solving: Principles and mechanisms (pp. 3-60). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Sternberg, R. J. (1995). Conceptions of expertise in complex problem solving: A comparison of alternative conceptions. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European Perspective (pp. 295-321). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Sternberg, R. J., & Frensch, P. A. (Eds.). (1991). Complex problem solving: Principles and mechanisms. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Strauß, B. (1993). Konfundierungen beim Komplexen Problemlösen. Zum Einfluß des Anteils der richtigen Lösungen (ArL) auf das Problemlöseverhalten in komplexen Situationen [Confoundations in complex problem solving. On the influence of the degree of correct solutions on problem solving in complex situations]. Bonn, Germany: Holos.
  • Strohschneider, S. (1991). Kein System von Systemen! Kommentar zu dem Aufsatz "Systemmerkmale als Determinanten des Umgangs mit dynamischen Systemen" von Joachim Funke [No system of systems! Reply to the paper "System features as determinants of behavior in dynamic task environments" by Joachim Funke]. Sprache & Kognition, 10, 109-113.
  • Van Lehn, K. (1989). Problem solving and cognitive skill acquisition. In M. I. Posner (Ed.), Foundations of cognitive science (pp. 527-579). Cambridge, MA: MIT Press.
  • Voss, J. F., Wolfe, C. R., Lawrence, J. A., & Engle, R. A. (1991). From representation to decision: An analysis of problem solving in international relations. In R. J. Sternberg & P. A. Frensch (Eds.), Complex problem solving: Principles and mechanisms (pp. 119-158). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Wagner, R. K. (1991). Managerial problem solving. In R. J. Sternberg & P. A. Frensch (Eds.), Complex problem solving: Principles and mechanisms (pp. 159-183). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Wisconsin Educational Media Association. (1993). "Information literacy: A position paper on information problem-solving." Madison, WI: WEMA Publications. (ED 376 817). (Portions adapted from Michigan State Board of Education's Position Paper on Information Processing Skills, 1992).
  • Altshuller, Genrich (1973). Innovation Algorithm. Worcester, MA: Technical Innovation Center. ISBN 0-9640740-2-8.
  • Altshuller, Genrich (1984). Creativity as an Exact Science. New York, NY: Gordon & Breach. ISBN 0-677-21230-5.
  • Altshuller, Genrich (1994). And Suddenly the Inventor Appeared. translated by Lev Shulyak. Worcester, MA: Technical Innovation Center. ISBN 0-9640740-1-X.
  • D’Zurilla, T. J., & Goldfried, M. R. (1971). Problem solving and behavior modification. Journal of Abnormal Psychology, 78, 107-126.
  • D'Zurilla, T. J., & Nezu, A. M. (1982). Social problem solving in adults. In P. C. Kendall (Ed.), Advances in cognitive-behavioral research and therapy (Vol. 1, pp. 201–274). New York: Academic Press.
  • Rath J. F.; Langenbahn D. M.; Simon D.; Sherr R. L.; Fletcher J.; Diller L. (2004). The construct of problem solving in higher level neuropsychological assessment and rehabilitation. Archives of Clinical Neuropsychology, 19, 613-635. doi:10.1016/j.acn.2003.08.006
  • Rath, J. F.; Simon, D.; Langenbahn, D. M.; Sherr, R. L.; Diller, L. (2003). Group treatment of problem-solving deficits in outpatients with traumatic brain injury: A randomised outcome study. Neuropsychological Rehabilitation, 13, 461-488.