Jump to content

Pure tone

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Citation bot (talk | contribs) at 03:41, 29 May 2020 (Add: pmid. Removed URL that duplicated unique identifier. | You can use this bot yourself. Report bugs here. | Activated by AManWithNoPlan | All pages linked from User:AManWithNoPlan/sandbox2 | via #UCB_webform_linked). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

A pure tone's pressure waveform versus time looks like this; its frequency determines the x axis scale; its amplitude determines the y axis scale; and its phase determines the x origin.

In psychoacoustics, a pure tone is a sound with a sinusoidal waveform; that is, a sine wave of any frequency, phase, and amplitude.[1] In clinical audiology, pure tones are used for pure tone audiometry to characterize hearing thresholds at different frequencies.

A sine wave is characterized by its frequency (the number of cycles per second), its amplitude (the strength of each cycle), and its phase shift (which indicates the time alignment relative to a zero-time reference point). A pure tone has the property – unique among real-valued wave shapes – that its wave shape is unchanged by linear time-invariant systems; that is, only the phase and amplitude change between such a system's pure-tone input and its output.

Sine and cosine waves can be used as basic building blocks of more complex waves. A pure tone of any frequency and phase can be decomposed into, or built up from, a sine wave and a cosine wave of that frequency. As additional sine waves having different frequencies are combined, the waveform transforms from a sinusoidal shape into a more complex shape.

Sound localization is often more difficult with pure tones than with other sounds.[2][3]

Relation to pitch and musical tones

Pure tones have been used by 19th century physicists like Georg Ohm and Hermann von Helmholtz to support theories asserting that the ear functions in a way equivalent to a Fourier frequency analysis.[4][5] In Ohm's acoustic law, later further elaborated by Helmholtz, musical tones are perceived as a set of pure tones. The percept of pitch depends on the frequency of the most prominent tone, and the phases of the individual components is discarded. This theory has often been blamed for creating a confusion between pitch, frequency and pure tones.[6]

Unlike musical tones that are composed of the sum of a number of harmonically related sinusoidal components, pure tones only contain one such sinusoidal waveform. When presented in isolation, and when its frequency pertains to a certain range, pure tones give rise to a single pitch percept, which can be characterized by its frequency. In this situation, the instantaneous phase of the pure tone varies linearly with time. If a pure tone gives rise to a constant, steady-state percept, then it can be concluded that its phase does not influence this percept. However, when multiple pure tones are presented at once, like in musical tones, their relative phase plays a role in the resulting percept. In such a situation, the perceived pitch is not determined by the frequency of any individual component, but by the frequency relationship between these components (see missing fundamental).

See also

References

  1. ^ ANSI S1.1-1994 Acoustical Terminology
  2. ^ Stanley Smith Stevens and Edwin B. Newman (1936). "The localization of actual sources of sound". The American Journal of Psychology. 48 (2): 297–306. doi:10.2307/1415748. JSTOR 1415748.
  3. ^ Hartmann, W. M. (1983). "Localization of sound in rooms". The Journal of the Acoustical Society of America. 74 (5): 1380–1391. Bibcode:1983ASAJ...74.1380H. doi:10.1121/1.390163. PMID 6643850.
  4. ^ von Helmholtz, Hermann L. F.; Ellis, Alexander J. (1875). On the sensations of tone as a physiological basis for the theory of music. London, UK: Longmans, Green, and Co.
  5. ^ Ohm, Georg (1843). "Ueber die Definition des Tones, nebst daran geknupfter Theorie der Sirene und ahnlicher tonbildenden Vorrichtungen". Poggendor's Annalen der Physik und Chemie. 59: 513–565.
  6. ^ W. Dixon Ward (1970). "Musical Perception". In Jerry V. Tobias (ed.). Foundations of Modern Auditory Theory. Vol. 1. Academic Press. p. 438.