Quadratic-linear algebra

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In mathematics, a quadratic-linear algebra is an algebra over a field with a presentation such that all relations are sums of monomials of degrees 1 or 2 in the generators. They were introduced by Polishchuk and Positselski (2005, p.101). An example is the universal enveloping algebra of a Lie algebra, with generators a basis of the Lie algebra and relations of the form XY – YX – [XY] = 0.

References[edit]