Simply connected at infinity

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In topology, a branch of mathematics, a topological space X is said to be simply connected at infinity if for all compact subsets C of X, there is a compact set D in X containing C so that the induced map

is trivial. Intuitively, this is the property that loops far away from a small subspace of X can be collapsed, no matter how bad the small subspace is.

The Whitehead manifold is an example of a 3-manifold that is contractible but not simply connected at infinity. Since this property is invariant under homeomorphism, this proves that the Whitehead manifold is not homeomorphic to R3.

However, it is a theorem of John R. Stallings[1] that for , a contractible n-manifold is homeomorphic to Rn precisely when it is simply connected at infinity.


  1. ^ "Theory : Chapter 10" (PDF). Retrieved 2015-03-08.