Slippery sequence

From Wikipedia, the free encyclopedia
Jump to: navigation, search

A slippery sequence is a small section of codon nucleotide sequences (usually UUUAAAC) that controls the rate of ribosomal frameshifting. A slippery sequence causes a faster ribosomal transfer which in turn can cause the reading ribosome to "slip." This allows a tRNA to shift by 1 base after it has paired with its anticodon, changing the reading frame.[1][2][3][4]

See also[edit]

References[edit]

  1. ^ Green L, Kim CH, Bustamante C, Tinoco I Jr. "Characterization of the Mechanical Unfolding of RNA Pseudoknots." J Mol Biol. 26 May 2007
  2. ^ Chien-Hung Yu, Mathieu H. M. Noteborn and René C. L. Olsthoorn.Stimulation of ribosomal frameshifting by antisense LNA. Nucl.Acids Res (2010) 38 (22):8277-8238
  3. ^ http://www.path.cam.ac.uk/research/investigators/brierley/research.html
  4. ^ "Molecular Biology: Frameshifting occurs at slippery sequences". Molecularstudy.blogspot.com. Retrieved 2013-07-28. 

External links[edit]