Sound power

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Vermont (talk | contribs) at 18:58, 13 August 2018 (Reverted edits by 2405:204:F28D:F62B:6994:C380:1470:7270 (talk) (HG) (3.4.3)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Sound measurements
Characteristic
Symbols
 Sound pressure p, SPL, LPA
 Particle velocity v, SVL
 Particle displacement δ
 Sound intensity I, SIL
 Sound power P, SWL, LWA
 Sound energy W
 Sound energy density w
 Sound exposure E, SEL
 Acoustic impedance Z
 Audio frequency AF
 Transmission loss TL

Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time.[1] The SI unit of sound power is the watt (W).[1] It is the power of the sound force on a surface of the medium of propagation of the sound wave. For a sound source, unlike sound pressure, sound power is neither room-dependent nor distance-dependent. Sound pressure is a property of the field at a point in space, while sound power is a property of a sound source, equal to the total power emitted by that source in all directions. Sound power passing through an area is sometimes called sound flux or acoustic flux through that area.

Sound power level LWA

File:Vacuum Cleaner Sound Power Level Test.jpg
Typical test environment showing microphone positions for sound power level testing[2] of a domestic vacuum cleaner
File:Vacuum Cleaner Sound Power Level Test Report.jpg
Sound power level test report
Maximum sound power level (LWA) related to a portable air compressor.

Regulations[3] control the maximum sound power level LWA that a device (e.g. vacuum cleaner) is allowed to produce. The A-weighting scale is used in the calculation as the regulation is concerned with the loudness as perceived by the human ear. Measurements[4] are taken at several defined points around the device.

The test environment can be located indoors or outdoors. The ideal environment is on the ground in a large open space or hemi-anechoic chamber (free-field over a reflecting plane ). To account for undesired reflections from nearby objects, walls, and the ceiling, and for any residual background noises, measurement corrections are applied.

Table of selected sound sources

Here is a table of some examples.[5]

Situation and
sound source
Sound power
(W)
Sound power level
(dB ref 10−12 W)
Saturn V rocket 100,000,000 200
Project Artemis Sonar 1,000,000 180
Turbojet engine 100,000 170
Turbofan aircraft at take-off 1,000 150
Turboprop aircraft at take-off 100 140
Machine gun
Large pipe organ
10 130
Symphony orchestra
Heavy thunder
Sonic boom
1 120
Rock concert
Chain saw
Accelerating motorcycle
0.1 110
Lawn mower
Car at highway speed
Subway steel wheels
0.01 100
Large diesel vehicle 0.001 90
Loud alarm clock 0.0001 80
Relatively quiet vacuum cleaner 10−5 70
Hair dryer 10−6 60
Radio or TV 10−7 50
Refrigerator
Low voice
10−8 40
Quiet conversation 10−9 30
Whisper of one person
Wristwatch ticking
10−10 20
Human breath of one person 10−11 10
Reference value 10−12 0

Mathematical definition

Sound power, denoted P, is defined by[6]

where

In a medium, the sound power is given by

where

  • A is the area of the surface;
  • ρ is the mass density;
  • c is the sound velocity;
  • θ is the angle between the direction of propagation of the sound and the normal to the surface.

For example, a sound at SPL = 85 dB or p = 0.356 Pa in air (ρ = 1.2 kg·m−3 and c = 343 m·s−1) through a surface of area A = 1 m2 normal to the direction of propagation (θ = 0 °) has a sound energy flux P = 0.3 mW.

This is the parameter one would be interested in when converting noise back into usable energy, along with any losses in the capturing device.

Relationships with other quantities

Sound power is related to sound intensity:

where

  • A is the area;
  • I is the sound intensity.

Sound power is related sound energy density:

where

Sound power level definition

Sound power level (SWL) or acoustic power level is a logarithmic measure of the power of a sound relative to a reference value.
Sound power level, denoted LW and measured in dB, is defined by[7]

where

  • P is the sound power;
  • P0 is the reference sound power;
  • 1 Np = 1 is the neper;
  • 1 B = 1/2 ln 10 is the bel;
  • 1 dB = 1/20 ln 10 is the decibel.

The commonly used reference sound power in air is[8]

The proper notations for sound power level using this reference are LW/(1 pW) or LW (re 1 pW), but the suffix notations dB SWL, dB(SWL), dBSWL, or dBSWL are very common, even if they are not accepted by the SI.[9]

The reference sound power P0 is defined as the sound power with the reference sound intensity I0 = 1 pW/m2 passing through a surface of area A0 = 1 m2:

hence the reference value P0 = 1 pW.

Relationship with sound pressure level

The generic calculation of sound power from sound pressure is as follows:

where: defines the area of a surface that wholly encompasses the source. This surface may be any shape, but it must fully enclose the source.

In the case of a sound source located in free field positioned over a reflecting plane (i.e. the ground), in air at ambient temperature, the sound power level at distance r from the sound source is approximately related to sound pressure level (SPL) by[10]

where

  • Lp is the sound pressure level;
  • A0 = 1 m2;
  • defines the surface area of a hemisphere; and
  • r must be sufficient that the hemisphere fully encloses the source.

Derivation of this equation:

For a progressive spherical wave,

(the surface area of sphere)

where z0 is the characteristic specific acoustic impedance.

Consequently,

and since by definition I0 = p02/z0, where p0 = 20 μPa is the reference sound pressure,

The sound power estimated practically does not depend on distance. The sound pressure used in the calculation may be affected by distance due to viscous effects in the propagation of sound unless this is accounted for.

References

  1. ^ a b Ronald J. Baken, Robert F. Orlikoff (2000). Clinical Measurement of Speech and Voice. Cengage Learning. p. 94. ISBN 9781565938694.
  2. ^ "EU Sound Power Regulation for Vacuum Cleaners". [NTi Audio]. Retrieved 22 December 2017.
  3. ^ "ISO 3744:2010(en) Acoustics — Determination of sound power levels and sound energy levels of noise sources using sound pressure — Engineering methods for an essentially free field over a reflecting plane". [ISO]. Retrieved 22 December 2017.
  4. ^ "EU Sound Power Regulation for Vacuum Cleaners". [NTi Audio]. Retrieved 22 December 2017.
  5. ^ "Sound Power". The Engineering Toolbox. Retrieved 28 November 2013.
  6. ^ Landau & Lifshitz, "Fluid Mechanics", Course of Theoretical Physics, Vol. 6
  7. ^ "Letter symbols to be used in electrical technology – Part 3: Logarithmic and related quantities, and their units", IEC 60027-3 Ed. 3.0, International Electrotechnical Commission, 19 July 2002.
  8. ^ Ross Roeser, Michael Valente, Audiology: Diagnosis (Thieme 2007), p. 240.
  9. ^ Thompson, A. and Taylor, B. N. sec 8.7, "Logarithmic quantities and units: level, neper, bel", Guide for the Use of the International System of Units (SI) 2008 Edition, NIST Special Publication 811, 2nd printing (November 2008), SP811 PDF
  10. ^ Chadderton, David V. Building services engineering, pp. 301, 306, 309, 322. Taylor & Francis, 2004. ISBN 0-415-31535-2

External links