From Wikipedia, the free encyclopedia
In mathematics , the Stolarsky mean of two positive real numbers x , y is defined as:
S
p
(
x
,
y
)
=
lim
(
ξ
,
η
)
→
(
x
,
y
)
(
ξ
p
−
η
p
p
(
ξ
−
η
)
)
1
/
(
p
−
1
)
=
{
x
if
x
=
y
(
x
p
−
y
p
p
(
x
−
y
)
)
1
/
(
p
−
1
)
else
{\displaystyle {\begin{aligned}S_{p}(x,y)&=\lim _{(\xi ,\eta )\to (x,y)}\left({\frac {\xi ^{p}-\eta ^{p}}{p(\xi -\eta )}}\right)^{1/(p-1)}\\[10pt]&={\begin{cases}x&{\text{if }}x=y\\\left({\frac {x^{p}-y^{p}}{p(x-y)}}\right)^{1/(p-1)}&{\text{else}}\end{cases}}\end{aligned}}}
It is derived from the mean value theorem , which states that a secant line , cutting the graph of a differentiable function
f
{\displaystyle f}
at
(
x
,
f
(
x
)
)
{\displaystyle (x,f(x))}
and
(
y
,
f
(
y
)
)
{\displaystyle (y,f(y))}
, has the same slope as a line tangent to the graph at some point
ξ
{\displaystyle \xi }
in the interval
[
x
,
y
]
{\displaystyle [x,y]}
.
∃
ξ
∈
[
x
,
y
]
f
′
(
ξ
)
=
f
(
x
)
−
f
(
y
)
x
−
y
{\displaystyle \exists \xi \in [x,y]\ f'(\xi )={\frac {f(x)-f(y)}{x-y}}}
The Stolarsky mean is obtained by
ξ
=
f
′
−
1
(
f
(
x
)
−
f
(
y
)
x
−
y
)
{\displaystyle \xi =f'^{-1}\left({\frac {f(x)-f(y)}{x-y}}\right)}
when choosing
f
(
x
)
=
x
p
{\displaystyle f(x)=x^{p}}
.
Special cases
lim
p
→
−
∞
S
p
(
x
,
y
)
{\displaystyle \lim _{p\to -\infty }S_{p}(x,y)}
is the minimum .
S
−
1
(
x
,
y
)
{\displaystyle S_{-1}(x,y)}
is the geometric mean .
lim
p
→
0
S
p
(
x
,
y
)
{\displaystyle \lim _{p\to 0}S_{p}(x,y)}
is the logarithmic mean . It can be obtained from the mean value theorem by choosing
f
(
x
)
=
ln
x
{\displaystyle f(x)=\ln x}
.
S
1
2
(
x
,
y
)
{\displaystyle S_{\frac {1}{2}}(x,y)}
is the power mean with exponent
1
2
{\displaystyle {\frac {1}{2}}}
.
lim
p
→
1
S
p
(
x
,
y
)
{\displaystyle \lim _{p\to 1}S_{p}(x,y)}
is the identric mean . It can be obtained from the mean value theorem by choosing
f
(
x
)
=
x
⋅
ln
x
{\displaystyle f(x)=x\cdot \ln x}
.
S
2
(
x
,
y
)
{\displaystyle S_{2}(x,y)}
is the arithmetic mean .
S
3
(
x
,
y
)
=
Q
M
(
x
,
y
,
G
M
(
x
,
y
)
)
{\displaystyle S_{3}(x,y)=QM(x,y,GM(x,y))}
is a connection to the quadratic mean and the geometric mean .
lim
p
→
∞
S
p
(
x
,
y
)
{\displaystyle \lim _{p\to \infty }S_{p}(x,y)}
is the maximum .
Generalizations
One can generalize the mean to n + 1 variables by considering the mean value theorem for divided differences for the n th derivative .
One obtains
S
p
(
x
0
,
…
,
x
n
)
=
f
(
n
)
−
1
(
n
!
⋅
f
[
x
0
,
…
,
x
n
]
)
{\displaystyle S_{p}(x_{0},\dots ,x_{n})={f^{(n)}}^{-1}(n!\cdot f[x_{0},\dots ,x_{n}])}
for
f
(
x
)
=
x
p
{\displaystyle f(x)=x^{p}}
.
See also
References