Jump to content

Suslin tree

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by CBM (talk | contribs) at 12:09, 20 June 2017 (Manually reviewed edit to replace magic words per local rfc). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a Suslin tree is a tree of height ω1 such that every branch and every antichain is at most countable. They are named after Mikhail Yakovlevich Suslin.

Every Suslin tree is an Aronszajn tree.

The existence of a Suslin tree is independent of ZFC, and is equivalent to the existence of a Suslin line (shown by Kurepa (1935)) or a Suslin algebra. The diamond principle, a consequence of V=L, implies that there is a Suslin tree, and Martin's axiom MA(ℵ1) implies that there are no Suslin trees.

More generally, for any infinite cardinal κ, a κ-Suslin tree is a tree of height κ such that every branch and antichain has cardinality less than κ. In particular a Suslin tree is the same as a ω1-Suslin tree. Jensen (1972) showed that if V=L then there is a κ-Suslin tree for every infinite successor cardinal κ. Whether the Generalized Continuum Hypothesis implies the existence of an ℵ2-Suslin tree, is a longstanding open problem.

See also

References

  • Thomas Jech, Set Theory, 3rd millennium ed., 2003, Springer Monographs in Mathematics,Springer, ISBN 3-540-44085-2
  • Jensen, R. Björn (1972), "The fine structure of the constructible hierarchy.", Ann. Math. Logic, 4 (3): 229–308, doi:10.1016/0003-4843(72)90001-0, MR 0309729 erratum, ibid. 4 (1972), 443.
  • Kunen, Kenneth (2011), Set theory, Studies in Logic, vol. 34, London: College Publications, ISBN 978-1-84890-050-9, Zbl 1262.03001
  • Kurepa, G. (1935), "Ensembles ordonnés et ramifiés", Publ. math. Univ. Belgrade, 4: 1–138, JFM 61.0980.01, Zbl 0014.39401