Talk:Wolfram code

From Wikipedia, the free encyclopedia
Jump to: navigation, search
WikiProject Computing (Rated Start-class)
WikiProject icon This article is within the scope of WikiProject Computing, a collaborative effort to improve the coverage of computers, computing, and information technology on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Start-Class article Start  This article has been rated as Start-Class on the project's quality scale.
 ???  This article has not yet received a rating on the project's importance scale.
 

"The number of possible rules, R, for a generalized cellular automaton in which each cell may assume one of S states as determined by a neighborhood size of n, in a D-dimensional space is given by: R=SS(2n+1)D

The most common example has S = 2, n = 1 and D = 1, giving R = 256. It should be noticed that the number of possible rules has an extreme dependence on the dimensionality of the system. For example, increasing the number of dimensions (D) from 1 to 2 increases the number of possible rules from 256 to 2512 (which is ~1.341×10154)." but in Newman or Moore neightborhoud ?! Please, give answers in both cases. thx 212.76.37.154 (talk) 08:43, 26 August 2009

This might not be the appropriate place to ask, but does anyone know if the cases S = 2, n = 1, D = 2 and S = 2, n = 4, D = 1 result in equivalent programs? (Since they both result in the same number of possible rules, R.) Also, I'll work on the question asked above (though I won't necessarily make any progress). Quietly (talk) 16:42, 18 August 2010 (UTC)