Jump to content

Thiophenol

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by CheMoBot (talk | contribs) at 11:56, 1 October 2009 (Updating {{chembox}} - no changes to verified or watched fields - +verified revid - updated 'CASNo_Ref' per Chem/Drugbox validation (report errors or [[us). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Thiophenol
Names
IUPAC name
Thiophenol
Other names
Benzenethiol
Identifiers
3D model (JSmol)
ECHA InfoCard 100.003.306 Edit this at Wikidata
RTECS number
  • DC0525000
  • c1ccccc1S
Properties
C6H6S
Molar mass 110.19 g/mol
Appearance colorless liquid
Density 1.0766 g/mL
Melting point -15 °C
Boiling point 169 °C
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Thiophenol is an organosulfur compound with the formula C6H5SH, and sometimes abbreviated as PhSH. Thisfoul-smelling colourless liquid is the simplest aromatic thiol. The chemical structures of thiophenols are analogous to phenols except the oxygen atom in the hydroxyl group (-OH) bonded to the aromatic ring is replaced by a sulfur atom. The prefix thio- implies a sulfur-containing compound and when used before a root word name for a compound which would normally contain an oxygen atom, thio- commonly means that the oxygen atom is replaced by a sulfur atom.

Thiophenols also describes a class of compounds formally derived from thiophenol itself. All have a sulfhydryl group (-SH) covalently bonded to an aromatic ring. The organosulfur ligand in the medicine merthiolate is a thiophenol.

Synthesis

Many ways exist to generate thiophenol and related compounds, although thiophenol is usually purchased for laboratory operations.

Phenols can be converted to the thiophenols via rearrangement of their O-aryl dialkylthiocarbamates.[2]

Properties

Acidity

Thiophenol has appreciably greater acidity than does phenol. Thiophenol has a pKa's of 6 vs 10 for phenol. A similar pattern is seen for H2S vs. H2O and all thiols vs. the corresponding alcohols. Treatment of PhSH with strong base such as sodium hydroxide (NaOH) or sodium metal affords the salt sodium thiophenolate (PhSNa).

Alkylation

The thiophenolate is highly nucleophilic, which translates to an high rate of alkylation.[3] Thus, treatment of C6H5SH with methyl iodide in the presence of a base gives methyl phenyl sulfide, C6H5SCH3, a thioether. Such reactions are fairly irreversible. C6H5SH also adds to α,β-unsaturated carbonyls via Michael addition.

Oxidation

Thiophenols, expecially in the presence of base is easily oxidized to diphenyl disulfide:

2 C6H5SH + 1/2 O2 → C6H5S-SC6H5 + H2O

The disulfide can be reduced back the thiol using sodium borohydride followed by acidification. This redox reaction is also exploited in the use of C6H5SH as a source of H atoms.

Chlorination

Phenylsulfenyl chloride, a blood-red liquid (b.p. 41–42 °C), can be prepared by the reaction of thiophenol with chlorine (Cl2).[4]

Coordination to metals

Metal cations form thiophenolates, some of which are polymeric. One example is "C6H5SCu," obtained by treating copper(I) chloride with thiophenol.[5]

Safety

Thiophenol is highly toxic.

References

  1. ^ Adams, R.; C. S. Marvel, C. S. "Thiophenol". Organic Syntheses{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 1, p. 504.
  2. ^ Melvin S. Newman and Frederick W. Hetzel (1990). "Thiophenols from Phenols: 2-Naphthalenethiol". Organic Syntheses; Collected Volumes, vol. 6, p. 824.
  3. ^ Campopiano, O. "Thiophenol" in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York. DOI: 10.1002/047084289.
  4. ^ Barrett, A. G. M.; Dhanak, D.; Graboski, G. G.; Taylor, S. J. (1993). "(Phenylthio)nitromethane". Organic Syntheses{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 8, p. 550.
  5. ^ Posner, G. H.; Whitten, C. E. "Secondary and Tertiary Alkyl Ketones from Carboxylic Acid Chlorides and Lithium Phenylthio(alkyl)cuprate Reagents: tert-Butyl Phenyl Ketone". Organic Syntheses{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 6, p. 248.