Jump to content

Triphosgene

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Rhadamante (talk | contribs) at 19:07, 24 September 2019 (better pic). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Triphosgene
Names
Preferred IUPAC name
Bis(trichloromethyl) carbonate
Other names
BTC
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.046.336 Edit this at Wikidata
  • InChI=1S/C3Cl6O3/c4-2(5,6)11-1(10)12-3(7,8)9 checkY
    Key: UCPYLLCMEDAXFR-UHFFFAOYSA-N checkY
  • InChI=1/C3Cl6O3/c4-2(5,6)11-1(10)12-3(7,8)9
    Key: UCPYLLCMEDAXFR-UHFFFAOYAA
  • ClC(Cl)(Cl)OC(=O)OC(Cl)(Cl)Cl
Properties
C3Cl6O3
Molar mass 296.748 g/mol
Appearance white crystals
Density 1.780 g/cm3
Melting point 80 °C (176 °F; 353 K)
Boiling point 206 °C (403 °F; 479 K)
Reacts
Solubility *soluble in dichloromethane[1]
  • soluble in THF[2]
  • soluble in toluene[3]
Hazards
GHS labelling:
class="wikitable collapsible" style="min-width: 50em;"
GHS hazard pictograms[4]
Pictogram Code Symbol description Image link
GHS01: Explosive GHS01 {{GHS exploding bomb}} Image:GHS-pictogram-explos.svg Explosive
GHS02: Flammable GHS02 {{GHS flame}} Image:GHS-pictogram-flamme.svg
GHS03: Oxidizing GHS03 {{GHS flame over circle}} Image:GHS-pictogram-rondflam.svg
GHS04: Compressed Gas GHS04 {{GHS gas cylinder}} Image:GHS-pictogram-bottle.svg
GHS05: Corrosive GHS05 {{GHS corrosion}} Image:GHS-pictogram-acid.svg Corrosive
GHS06: Toxic GHS06 {{GHS skull and crossbones}} Image:GHS-pictogram-skull.svg Accute Toxic
GHS07: Exclamation mark GHS07 {{GHS exclamation mark}} Image:GHS-pictogram-exclam.svg Irritant
GHS08: Health hazard GHS08 {{GHS health hazard}} Image:GHS-pictogram-silhouette.svg Health Hazard
GHS09: Environmental hazard GHS09 {{GHS environment}} Image:GHS-pictogram-pollu.svg Environment

See also

GHS hazard pictograms[4]
Pictogram Code Symbol description Image link
GHS01: Explosive GHS01 {{GHS exploding bomb}} Image:GHS-pictogram-explos.svg Explosive
GHS02: Flammable GHS02 {{GHS flame}} Image:GHS-pictogram-flamme.svg
GHS03: Oxidizing GHS03 {{GHS flame over circle}} Image:GHS-pictogram-rondflam.svg
GHS04: Compressed Gas GHS04 {{GHS gas cylinder}} Image:GHS-pictogram-bottle.svg
GHS05: Corrosive GHS05 {{GHS corrosion}} Image:GHS-pictogram-acid.svg Corrosive
GHS06: Toxic GHS06 {{GHS skull and crossbones}} Image:GHS-pictogram-skull.svg Accute Toxic
GHS07: Exclamation mark GHS07 {{GHS exclamation mark}} Image:GHS-pictogram-exclam.svg Irritant
GHS08: Health hazard GHS08 {{GHS health hazard}} Image:GHS-pictogram-silhouette.svg Health Hazard
GHS09: Environmental hazard GHS09 {{GHS environment}} Image:GHS-pictogram-pollu.svg Environment

See also

|-

|-

| style="padding-left:1em;" |

| Danger

|-

|-

| style="padding-left:1em;" |

| H314, H330[5]

|-

|-

| style="padding-left:1em;" |

| P260, P280, P284, P305+P351+P338, P310[5]

|-




| Safety data sheet (SDS) | SDS Triphosgene |-





| colspan=2 style="text-align:left; background:#f8eaba; border:1px solid #a2a9b1;" |

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

|-

|}

Triphosgene (bis(trichloromethyl) carbonate (BTC), C3Cl6O3) is a chemical compound that is used as a safer substitute for phosgene, because, at room temperature, it is a solid crystal, as opposed to phosgene, which is a gas.[6] Triphosgene crystals decompose above 200 °C.[7]

Preparation

This compound is commercially available. It is prepared by exhaustive free radical chlorination of dimethyl carbonate:[6]

CH3OCO2CH3 + 6 Cl2 → CCl3OCO2CCl3 + 6 HCl

Triphosgene can be easily recrystallized from boiling hexanes to yield pure white crystals.

Uses

Triphosgene is used as a reagent in organic synthesis and is a less hazardous substitute for phosgene for a variety of chemical transformations including to bond one carbonyl group to two alcohols, and to convert an amine group into isocyanate.[6]

Safety

The toxicity of triphosgene is the same as phosgene since it decomposes to phosgene on heating and upon reaction with nucleophiles. Even trace moisture leads to formation of phosgene. Therefore, this reagent can be safely handled if one takes all the precautions as for phosgene.[8]

See also

References

  1. ^ Michelle A. Ouimet, Nicholas D. Stebbins, Kathryn E. Uhrich (2013). "Biodegradable Coumaric Acid-Based Poly(anhydride-ester) Synthesis and Subsequent Controlled Release". Macromol. Rapid Commun. 34 (15): 1231–1236. doi:10.1002/marc.201300323. PMC 3789234. PMID 23836606.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ Tang, Shouwan; Ikai, Tomoyuki; Tsuji, Masashi; Okamoto, Yoshio (2010). "Immobilization and chiral recognition of 3,5-dimethylphenylcarbamates of cellulose and amylose bearing 4-(trimethoxysilyl)phenylcarbamate groups". Chirality. 22 (1): 165–172. doi:10.1002/chir.20722. PMID 19455617.
  3. ^ Zhou, Yuhan; Gong, Runjun; Miao, Weirong (2006-09-01). "New Method of Synthesizing N‐Alkoxycarbonyl‐N‐arylamide with Triphosgene". Synthetic Communications. 36 (18): 2661–2666. doi:10.1080/00397910600764675. ISSN 0039-7911.
  4. ^ a b "Globally Harmonized System of Classification and Labelling of Chemicals" (pdf). 2021. Annex 3: Codification of Statements and Pictograms (pp 268–385).
  5. ^ a b c Sigma-Aldrich Co., Triphosgene. Retrieved on 2018-06-12.
  6. ^ a b c Dr. Heiner Eckert; Dr. Barbara Forster (1987). "Triphosgene, a Crystalline Phosgene Substitute". Angew. Chem. Int. Ed. Engl. 26 (9): 894–895. doi:10.1002/anie.198708941.
  7. ^ Dr. Heiner Eckert (2011). "Phosgenation Reactions with Phosgene from Triphosgene". Chim. Oggi Chem. Today. 29 (6): 40–46.
  8. ^ Suresh B. Damle (1993-02-08). "Safe handling of diphosgene, triphosgene". Chemical & Engineering News. 71 (6): 4.

External links