Jump to content

Tripuhyite

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Tom.Reding (talk | contribs) at 22:57, 22 November 2017 (Rep typographic ligatures like "fi" with plain text; possible ref cleanup; WP:GenFixes on, replaced: fi → fi using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Tripuhyite
General
CategoryAntimonate mineral
Formula
(repeating unit)
FeSbO4
Strunz classification4.DB.05
Crystal systemTetragonal
Crystal classDitetragonal dipyramidal (4/mmm)
H-M symbol: (4/m 2/m 2/m)
Space groupP41/mnm
Unit cella = 4.63, c = 9.14 [Å]; Z = 2
Identification
ColorYellowish brown, lemon-yellow, brown-black
Crystal habitFibrous to fine-grained aggregates
Mohs scale hardness6 - 7
LusterDull to earthy
StreakCanary-yellow to dark brown with a greenish tinge
DiaphaneityTranslucent
Specific gravity5.82
Optical propertiesUniaxial (+)
Refractive indexnω = 2.190 nε = 2.330
Birefringenceδ = 0.140
Other characteristicsAntiferromagnetic
References[1][2][3]

Tripuhyite is an iron antimonate mineral with composition FeSbO4.

Nomenclature

The name of the mineral comes from the locality of Tripuhy, Ouro Preto, Minas Gerais, Brazil, where it was discovered. Hussak and Prior[4] first described the mineral tripuhyite as an oxide of iron and antimony, and assigned it the composition Fe2Sb2O7. When a mineral with composition FeSbO4 was later discovered in Squaw Creek, New Mexico (US), it was considered erroneously as a new mineral and it was given the name squawcreekite.[5] However, other studies had shown that the original tripuhyite was also FeSbO4.[6] In 2002, the Commission on New Minerals and Mineral Names (CNMMN) of the International Mineralogical Association (IMA), approved the redefinition of tripuhyite as FeSbO4 and the discreditation of squawcreekite.[7]

Crystal Structure

FeSbO4 exhibits the rutile structure, with a tetragonal unit cell. The cations are octahedrally coordinated to oxygen anions, with the octahedra sharing edges along the c-direction. Fe(III) and Sb(V) cations are distributed in a disordered way over the octahedral sites.

References

  1. ^ Mindat.org
  2. ^ Handbook of Mineralogy
  3. ^ Webmineral data
  4. ^ Hussak, E.; Prior, G. T. (1897). "On Tripuhyite, a New Antimonate of Iron, from Tripuhy, Brazil". Mineralogical Magazine. 11: 302–303. doi:10.1180/minmag.1897.011.53.04.
  5. ^ Foord, E. E.; P. F. Hlava; J. J. Fitzpatrick; R. C. Erd; R. W. Hinton (1991). Neues Jahrbuch Fur Mineralogie-Monatshefte. 8: 363–384. {{cite journal}}: Missing or empty |title= (help)
  6. ^ Tavora, E. (1955). "X-ray diffraction powder data for some minerals from Brazilian localities". Anais da Academia Brasileira de Ciencias. 27: 7–27.
  7. ^ Berlepsch, P.; T. Armbruster; J. Brugger; A. J. Criddle; S. Graeser (2003). "Tripuhyite, FeSbO4, revisited". Mineralogical Magazine. 67: 31–46. doi:10.1180/0026461036710082.