Jump to content

Tunnell's theorem

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Solomon7968 (talk | contribs) at 20:45, 4 August 2015 (link Graduate Texts in Mathematics using Find link). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In number theory, Tunnell's theorem gives a partial resolution to the congruent number problem, and under the Birch and Swinnerton-Dyer conjecture, a full resolution.

Congruent number problem

The congruent number problem asks which positive integers can be the area of a right triangle with all three sides rational. Tunnell's theorem relates this to the number of integral solutions of a few fairly simple Diophantine equations.

Theorem

For a given square-free integer n, define

Tunnell's theorem states that supposing n is a congruent number, if n is odd then 2An = Bn and if n is even then 2Cn = Dn. Conversely, if the Birch and Swinnerton-Dyer conjecture holds true for elliptic curves of the form , these equalities are sufficient to conclude that n is a congruent number.

History

The theorem is named for Jerrold B. Tunnell, a number theorist at Rutgers University, who proved it in 1983.

Importance

The importance of Tunnell's theorem is that the criterion it gives is testable by a finite calculation. For instance, for a given n, the numbers An,Bn,Cn,Dn can be calculated by exhaustively searching through x,y,z in the range .

References

  • Koblitz, Neal (1984). Introduction to Elliptic Curves and Modular Forms. Graduate Texts in Mathematics, no. 97, Springer-Verlag. ISBN 0-387-97966-2.
  • Tunnell, Jerrold B. (1983). "A classical Diophantine problem and modular forms of weight 3/2". Inventiones Mathematicae. 72 (2): 323–334. doi:10.1007/BF01389327.