# Gegenbauer polynomials

(Redirected from Ultraspherical polynomial)

In mathematics, Gegenbauer polynomials or ultraspherical polynomials C(α)
n
(x) are orthogonal polynomials on the interval [−1,1] with respect to the weight function (1 − x2)α–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer.

## Characterizations

A variety of characterizations of the Gegenbauer polynomials are available.

${\displaystyle {\frac {1}{(1-2xt+t^{2})^{\alpha }}}=\sum _{n=0}^{\infty }C_{n}^{(\alpha )}(x)t^{n}.}$
{\displaystyle {\begin{aligned}C_{0}^{\alpha }(x)&=1\\C_{1}^{\alpha }(x)&=2\alpha x\\C_{n}^{\alpha }(x)&={\frac {1}{n}}[2x(n+\alpha -1)C_{n-1}^{\alpha }(x)-(n+2\alpha -2)C_{n-2}^{\alpha }(x)].\end{aligned}}}
• Gegenbauer polynomials are particular solutions of the Gegenbauer differential equation (Suetin 2001):
${\displaystyle (1-x^{2})y''-(2\alpha +1)xy'+n(n+2\alpha )y=0.\,}$
When α = 1/2, the equation reduces to the Legendre equation, and the Gegenbauer polynomials reduce to the Legendre polynomials.
${\displaystyle C_{n}^{(\alpha )}(z)={\frac {(2\alpha )_{n}}{n!}}\,_{2}F_{1}\left(-n,2\alpha +n;\alpha +{\frac {1}{2}};{\frac {1-z}{2}}\right).}$
(Abramowitz & Stegun p. 561). Here (2α)n is the rising factorial. Explicitly,
${\displaystyle C_{n}^{(\alpha )}(z)=\sum _{k=0}^{\lfloor n/2\rfloor }(-1)^{k}{\frac {\Gamma (n-k+\alpha )}{\Gamma (\alpha )k!(n-2k)!}}(2z)^{n-2k}.}$
${\displaystyle C_{n}^{(\alpha )}(x)={\frac {(2\alpha )_{n}}{(\alpha +{\frac {1}{2}})_{n}}}P_{n}^{(\alpha -1/2,\alpha -1/2)}(x).}$
in which ${\displaystyle (\theta )_{n}}$ represents the rising factorial of ${\displaystyle \theta }$.
One therefore also has the Rodrigues formula
${\displaystyle C_{n}^{(\alpha )}(x)={\frac {(-1)^{n}}{2^{n}n!}}{\frac {\Gamma (\alpha +{\frac {1}{2}})\Gamma (n+2\alpha )}{\Gamma (2\alpha )\Gamma (\alpha +n+{\frac {1}{2}})}}(1-x^{2})^{-\alpha +1/2}{\frac {d^{n}}{dx^{n}}}\left[(1-x^{2})^{n+\alpha -1/2}\right].}$

## Orthogonality and normalization

For a fixed α, the polynomials are orthogonal on [−1, 1] with respect to the weighting function (Abramowitz & Stegun p. 774)

${\displaystyle w(z)=\left(1-z^{2}\right)^{\alpha -{\frac {1}{2}}}.}$

To wit, for n ≠ m,

${\displaystyle \int _{-1}^{1}C_{n}^{(\alpha )}(x)C_{m}^{(\alpha )}(x)(1-x^{2})^{\alpha -{\frac {1}{2}}}\,dx=0.}$

They are normalized by

${\displaystyle \int _{-1}^{1}\left[C_{n}^{(\alpha )}(x)\right]^{2}(1-x^{2})^{\alpha -{\frac {1}{2}}}\,dx={\frac {\pi 2^{1-2\alpha }\Gamma (n+2\alpha )}{n!(n+\alpha )[\Gamma (\alpha )]^{2}}}.}$

## Applications

The Gegenbauer polynomials appear naturally as extensions of Legendre polynomials in the context of potential theory and harmonic analysis. The Newtonian potential in Rn has the expansion, valid with α = (n − 2)/2,

${\displaystyle {\frac {1}{|\mathbf {x} -\mathbf {y} |^{n-2}}}=\sum _{k=0}^{\infty }{\frac {|\mathbf {x} |^{k}}{|\mathbf {y} |^{k+n-2}}}C_{n,k}^{(\alpha )}(\mathbf {x} \cdot \mathbf {y} ).}$

When n = 3, this gives the Legendre polynomial expansion of the gravitational potential. Similar expressions are available for the expansion of the Poisson kernel in a ball (Stein & Weiss 1971).

It follows that the quantities ${\displaystyle C_{n,k}^{((n-2)/2)}(\mathbf {x} \cdot \mathbf {y} )}$ are spherical harmonics, when regarded as a function of x only. They are, in fact, exactly the zonal spherical harmonics, up to a normalizing constant.

Gegenbauer polynomials also appear in the theory of Positive-definite functions.

${\displaystyle \sum _{j=0}^{n}{\frac {C_{j}^{\alpha }(x)}{2\alpha +j-1 \choose j}}\geq 0\qquad (x\geq -1,\,\alpha \geq 1/4).}$