1. π = C d = 3.1415926535... {\displaystyle \pi ={\frac {C}{d}}=3.1415926535...} 2. e = lim n → ∞ ( ( 1 + 1 n ) n ) = ∑ k = 0 ∞ ( 1 k ! ) = 2.7182818284... {\displaystyle e=\lim _{n\to \infty }\left(\left(1+{\frac {1}{n}}\right)^{n}\right)=\sum _{k=0}^{\infty }\left({\frac {1}{k!}}\right)=2.7182818284...} 3. γ = lim n → ∞ ( ∑ k = 1 n ( 1 k ) − ln ( n ) ) = ∫ 1 ∞ 1 ⌊ x ⌋ − 1 x d x = 0.5772156649... {\displaystyle \gamma =\lim _{n\to \infty }\left(\sum _{k=1}^{n}\left({\frac {1}{k}}\right)-\ln(n)\right)=\int _{1}^{\infty }{\frac {1}{\left\lfloor x\right\rfloor }}-{\frac {1}{x}}\,dx=0.5772156649...} 4. C = ∑ k = 0 ∞ ( ( − 1 ) k ( 2 k + 1 ) 2 ) = 0.9159655941... {\displaystyle C=\sum _{k=0}^{\infty }\left({\frac {\left(-1\right)^{k}}{\left(2k+1\right)^{2}}}\right)=0.9159655941...} 5. G = 1 agm ( 1 , 2 ) = 0.8346268417... {\displaystyle G={\frac {1}{\operatorname {agm} \left(1,{\sqrt {2}}\right)}}=0.8346268417...} 6. ζ ( 3 ) = ∑ k = 1 ∞ ( 1 k 3 ) = 1.2020569031... {\displaystyle \zeta (3)=\sum _{k=1}^{\infty }\left({\frac {1}{k^{3}}}\right)=1.2020569031...} 7. ln ( 2 ) = log e 2 = lim n → ∞ ( n ( 2 n − 1 ) ) = 0.6931471805... {\displaystyle \ln \left(2\right)=\log _{e}2=\lim _{n\to \infty }\left(n\left({\sqrt[{n}]{2}}-1\right)\right)=0.6931471805...} 8. Ω = W ( 1 ) = 0.5671432904... {\displaystyle \Omega =\operatorname {W} \left(1\right)=0.5671432904...} 9. δ = lim n → ∞ ( a n − 1 − a n − 2 a n − a n − 1 ) = 4.6692016091... {\displaystyle \delta =\lim _{n\to \infty }\left({\frac {a_{n-1}-a_{n-2}}{a_{n}-a_{n-1}}}\right)=4.6692016091...} 10. K 0 = ∏ r = 1 ∞ ( ( 1 + 1 r ( r + 2 ) ) log 2 ( r ) ) = 2.6854520010... {\displaystyle K_{0}=\prod _{r=1}^{\infty }\left({\left(1+{1 \over r\left(r+2\right)}\right)}^{\log _{2}\left(r\right)}\right)=2.6854520010...}
11. α = lim n → ∞ ( d n d n + 1 ) = 2.502907875... {\displaystyle \alpha =\lim _{n\to \infty }\left({\frac {d_{n}}{d_{n+1}}}\right)=2.502907875...} 12. £ L i = ∑ k = 1 ∞ ( 1 10 k ! ) = 0.1100010000... {\displaystyle {\text{£}}_{Li}=\sum _{k=1}^{\infty }\left({\frac {1}{10^{k!}}}\right)=0.1100010000...} 13. Ω = ∑ p ∈ P F ( 2 − | p | ) = 0.0078749969... {\displaystyle \Omega =\sum _{p\in P_{F}}\left(2^{-\left\vert p\right\vert }\right)=0.0078749969...} 14. e π = ∑ k = 0 ∞ ( π n n ! ) = 23.1406926327... {\displaystyle e^{\pi }=\sum _{k=0}^{\infty }\left({\frac {\pi ^{n}}{n!}}\right)=23.1406926327...} 15. C 10 = 0.1234567891... {\displaystyle C_{10}=0.1234567891...} 16. 2 2 = 2.6651441426... {\displaystyle 2^{\sqrt {2}}=2.6651441426...} 17. i i = e − π 2 = 0.2078795763... {\displaystyle i^{i}=e^{-{\frac {\pi }{2}}}=0.2078795763...} 18. ϖ = π G = 2.6220575542... {\displaystyle \varpi =\pi G=2.6220575542...} 19. τ = 1 − 1 e = 0.6321205588... {\displaystyle \tau =1-{\frac {1}{e}}=0.6321205588...} 20. b = ( 3 − 5 ) π = 2.3999632297... {\displaystyle b=(3-{\sqrt {5}})\pi =2.3999632297...}
∑ x = 1 ∞ ( x x ! ) {\displaystyle \sum _{x=1}^{\infty }\left({\frac {x}{x!}}\right)} Al 2 O 3 − AlO 2 = Y 0 Ud 1 Ed {\displaystyle {\ce {Al2O3-AlO2=Y0Ud1Ed}}} Al 2 O 3 + C 2 + 2 O 3 + 3 O + 4 O 3 2 ⟶ Al 2 CO 3 + E n {\displaystyle {\ce {Al2O3 +C2 +2O3 +3O +4O3^2->Al2CO3 +E_{n}}}} 很抱歉,你的电话未接通。。。。 注:E代表沈罗斯加克元素