Definition: A x matrix is -separable if and only if where such that
First we will describe another way to look at the problem of group testing and how to decode it from a different notation. We can give a new interpretation of how group testing works as follows:
Group Testing: Given input and such that output
- Take to be the column of
- Define so that if and only if
- This gives that
This formalizes the relation between and the columns of and in a way more suitable to the thinking of -separable and -disjunct matrices. The algorithm to decode a -separable matrix is as follows:
Given a x matrix such that is -separable:
- For each such that check if
This algorithm runs in time .
In literature disjunct matrices are also called super-imposed codes and d-cover-free families.
Definition: A x matrix is d-disjunct if such that , such that but .
Denoting is the column of and where if and only if gives that is -disjunct if and only if
Claim: is -disjunct implies is -separable
Proof: (by contradiction) Let be a x -disjunct matrix. Assume for contradiction that is not -separable. Then there exists and with such that . This implies that such that . This contradicts the fact that is -disjunct. Therefore is -separable.
The algorithm for -separable matrices was still a polynomial in . The following will give a nicer algorithm for -disjunct matrices which will be a multiple instead of raised to the power of given our bounds for . The algorithm is as follows in the proof of the following lemma:
Lemma 1: There exists an time decoding for any -disjunct x matrix.
- Observation 1: For any matrix and given if it implies such that and where and . The opposite is also true. If it implies if then . This is the case because is generated by taking all of the logical or of the 's where .
- Observation 2: For any -disjunct matrix and every set where and for each where there exists some where such that but . Thus, if then .
Proof of Lemma 1: Given as input use the following algorithm:
- For each set
- For , if then for all , if set
By Observation 1 we get that any position where the appropriate 's will be set to 0 by step 2 of the algorithm. By Observation 2 we have that there is at least one such that if is supposed to be 1 then and, if is supposed to be 1, it can only be the case that as well. Therefore step 2 will never assign the value 0 leaving it as a 1 and solving for . This takes time overall.
Upper Bounds for Non-Adaptive Group Testing
[edit]
The results for these upper bounds rely mostly on the properties of -disjunct matrices. Not only are the upper bounds nice, but from Lemma 1 we know that there is also a nice decoding algorithm for these bounds. First the following lemma will be proved since it is relied upon for both constructions:
Lemma 2: Given let be a x matrix and:
for some integers then is -disjunct.
Note: these conditions are stronger than simply having a subset of size but rather applies to any pair of columns in a matrix. Therefore no matter what column that is chosen in the matrix, that column will contain at least 1's and the total number of shared 1's by any two columns is .
Proof of Lemma 2: Fix an arbitrary and a matrix . There exists a match between if column has a 1 in the same row position as in column . Then the total number of matches is , i.e. a column has a fewer number of matches than the number of ones in it. Therefore there must be a row with all 0s in but a 1 in .
We will now generate constructions for the bounds.
Randomized Construction
[edit]
This first construction will use a probabilistic argument to show the property wanted, in particular the Chernoff bound. Using this randomized construction gives that . The following lemma will give the result needed.
Theorem 1: There exists a random -disjunct matrix with rows.
Proof of Theorem 1: Begin by building a random x matrix with (where will be picked later). It will be shown that is -disjunct. First note that and let independently with probability for and . Now fix . Denote the column of as . Then the expectancy is . Using the Chernoff bound, with , gives if . Taking the union bound over all columns gives , . This gives , . Therefore with probability .
Now suppose and then . So . Using the Chernoff bound on this gives if . By the union bound over pairs such that . This gives that and with probability . Note that by changing the probability can be made to be . Thus . By setting to be , the above argument shows that is -disjunct.
Note that in this proof thus giving the upper bound of .
Strongly Explicit Construction
[edit]
It is possible to prove a bound of using a strongly explicit code. Although this bound is worse by a factor it is preferable because this produces a strongly explicit construction instead of a randomized one.
Theorem 2: There exists a strongly explicit -disjunct matrix with rows.
This proof will use the properties of concatenated codes along with the properties of disjunct matrices to construct a code that will satisfy the bound we are after.
Proof of Theorem 2:
Let such that . Denote as the matrix with its column being . If can be found such that
- ,
then is -disjunct. To complete the proof another concept must be introduced. This concept uses code concatenation to obtain the result we want.
Kautz-Singleton '64
Let . Let be a -Reed-Solomon code. Let such that for , where the 1 is in the position. Then , , and .
---
Example: Let . Below, denotes the matrix of codewords for and denotes the matrix of codewords for , where each column is a codeword. The overall image shows the transition from the outer code to the concatenated code.
File:Https://wiki.cse.buffalo.edu/cse545/files/26/example 0.png
---
Divide the rows of into sets of size and number them as where indexes the set of rows and indexes the row in the set. If then note that where . So that means . Since it gives that so let . Since , the entries in each column of can be looked at as sets of entries where only one of the entries is nonzero (by definition of ) which gives a total of nonzero entries in each column. Therefore and (so is -disjunct).
Now pick and such that (so ). Since we have . Since and it gives that .
Thus we have a strongly explicit construction for a code that can be used to form a group testing matrix and so .
For non-adaptive testing we have shown that and we have that (i) (strongly explicit) and (ii) (randomized). As of recent work by Porat and Rothscheld they presented a explicit method construction (i.e. deterministic time but not strongly explicit) for [1], however it is not shown here. There is also a lower bound for disjunct matrices of [2][3][4] which is not shown here either.
- ^ Porat, E., & Rothschild, A. (2008). Explicit Non-adaptive Combinatorial Group Testing Schemes. In Proceedings of the 35th International Colloquium on Automata, Languages and Programming (ICALP) (pp. 748-759).
- ^ Dýachkov, A. G., & Rykov, V. V. (1982). Bounds on the length of disjunctive codes. Problemy Peredachi Informatsii [Problems of Information Transmission], 18(3), 7-13.
- ^ Dýachkov, A. G., Rashad, A. M., & Rykov, V. V. (1989). Superimposed distance codes. Problemy Upravlenija i Teorii Informacii [Problems of Control and Information Theory], 18(4), 237-250.
- ^ Zoltan Furedi, On r-Cover-free Families, Journal of Combinatorial Theory, Series A, Volume 73, Issue 1, January 1996, Pages 172-173, ISSN 0097-3165, DOI: 10.1006/jcta.1996.0012. (http://www.sciencedirect.com/science/article/B6WHS-45NJMVF-39/2/172ef8c5c4aee2d85d1ddd56b107eef3)
- Atri Rudra's course on Error Correcting Codes: Combinatorics, Algorithms, and Applications (Spring 2010), Lectures 28, 29.