# User:Egil530/matematikk

 ${\displaystyle Barn\;x\,}$ ${\displaystyle Voksne\;y\,}$
 ${\displaystyle 5x+7y\,}$ ${\displaystyle =5\,}$ ${\displaystyle 4x+4y\,}$ ${\displaystyle =3,2\,}$
 ${\displaystyle {\frac {5x}{5}}\,}$ ${\displaystyle ={\frac {5}{5}}-{\frac {7y}{5}}\,}$ ${\displaystyle x\,}$ ${\displaystyle =1-1,4y\,}$ ${\displaystyle 4(1-1,4y)+4y\,}$ ${\displaystyle =3,2\,}$ ${\displaystyle 4-5,6y+4y\,}$ ${\displaystyle =3,2\,}$ ${\displaystyle 4-3,2\,}$ ${\displaystyle =5,6y-4y\,}$ ${\displaystyle {\frac {0,8}{1,6}}\,}$ ${\displaystyle ={\frac {1,6y}{1,6}}\,}$ ${\displaystyle y\,}$ ${\displaystyle =0,5\,}$
 ${\displaystyle x\,}$ ${\displaystyle =1-1,4y\,}$ ${\displaystyle x\,}$ ${\displaystyle =1-1,4\times 0,5\,}$ ${\displaystyle x\,}$ ${\displaystyle =1-0,7\,}$ ${\displaystyle x\,}$ ${\displaystyle =0,3\,}$
 ${\displaystyle 3\times 0,3\,}$ ${\displaystyle =0,9\;kg\,}$ ${\displaystyle 10\times 0,5\,}$ ${\displaystyle =5\;kg\,}$ ${\displaystyle 0,9+5\,}$ ${\displaystyle =5,9\;kg\,}$

slutt

${\displaystyle y_{3}=16433,42\approx 16433,50\;kr}$

${\displaystyle {\begin{vmatrix}\times 4\end{vmatrix}}}$

${\displaystyle 13!=6227020800\,}$

${\displaystyle 13!=6.227.020.800\,}$

 ${\displaystyle 6,98\;\/ounce\,}$ ${\displaystyle =6,98\times 6,43\;kr/28,349\;g\,}$ ${\displaystyle {\frac {44,8814\;kr}{28,35}}/{\frac {28,35\;g}{28,35}}\,}$ ${\displaystyle =1,583\;kr/g\,}$

${\displaystyle 35+39+33=107\;g\,}$ ${\displaystyle 107\times 0,830=88,81\;g\,}$ ${\displaystyle 88,81\times 13=1154,53\;g\,}$ ${\displaystyle 1154,53\times 1,583=1827,62\;kr\approx 1827,50\;kr\,}$

Brukes senere:

 ${\displaystyle 35\;g\ times1,583\;kr/g\,}$ ${\displaystyle =\,}$ ${\displaystyle {\frac {44,8814\;kr}{28,35}}/{\frac {28,35\;g}{28,35}}\,}$ ${\displaystyle =1,583\;kr/g\,}$

 ${\displaystyle {\frac {(x-100)+x+(x-100)\times 2+2x}{4}}\,}$ ${\displaystyle =825\,}$ ${\displaystyle (x-100)+x+(x-100)\times 2+2x\,}$ ${\displaystyle =3300\,}$ ${\displaystyle x-100+x+2x-200+2x\,}$ ${\displaystyle =3300\,}$ ${\displaystyle x+x+2x+2x\,}$ ${\displaystyle =3300+100+200\,}$ ${\displaystyle {\frac {6x}{6}}\,}$ ${\displaystyle ={\frac {3600}{6}}\,}$ ${\displaystyle x\,}$ ${\displaystyle =600\,}$
 ${\displaystyle 2,5:10\,}$ ${\displaystyle =0,25\;l\;saft\,}$ ${\displaystyle 0,25\times 9\,}$ ${\displaystyle =2,25\;l\;vann\,}$ ${\displaystyle 2,25:5\,}$ ${\displaystyle =0,45\,}$ ${\displaystyle 0,45-0,25\,}$ ${\displaystyle =0,2\;l\;saft\,}$
 ${\displaystyle 4\times \pi \times \ 5^{2}\,}$ ${\displaystyle =314,159\;cm^{2}\,}$ ${\displaystyle s\,}$ ${\displaystyle ={\sqrt {5^{2}+5^{2}}}=7,071\,}$ ${\displaystyle \pi (5\times 5+5\times 7,071)\,}$ ${\displaystyle =\pi (25+35,355)=189,61\;cm^{2}\,}$
 ${\displaystyle 314,159\;cm^{2}+189,61\;cm^{2}\,}$ ${\displaystyle =503,769\;cm^{2}\,}$ ${\displaystyle 503,769\;cm^{2}\times 20\,}$ ${\displaystyle =10075,38\;cm^{2}\approx 1\;m^{2}\,}$

${\displaystyle A=\pi r(r+s)\,}$

${\displaystyle A=\pi r(r+{\sqrt {r^{2}+h^{2}}})}$

${\displaystyle Y_{n}=Y_{0}\left(1+{\frac {p}{100}}\right)^{n}}$

${\displaystyle Y_{n}=Y_{0}\left(1+{\frac {p}{100}}\right)^{n}}$

 ${\displaystyle {\frac {\pi \times 5^{2}\times 5}{3}}\,}$ ${\displaystyle \approx 130,9\;cm^{3}\,}$ ${\displaystyle {\frac {4\times \pi \times 5^{3}}{3}}\,}$ ${\displaystyle \approx 523,6\;cm^{3}\,}$ ${\displaystyle 130,9\;cm^{3}+523,6\;cm^{3}\,}$ ${\displaystyle =654,5\;cm^{3}=0,6545\;dm^{3}\,}$ ${\displaystyle 0,6545\;dm^{3}\times 3,1\;kg/dm^{3}\,}$ ${\displaystyle =2,02895\;kg\,}$ ${\displaystyle 2,02895\;kg\times 20\,}$ ${\displaystyle =40,57\;kg\approx 40,5\;kg\,}$

 ${\displaystyle (2x)^{2}\,}$ ${\displaystyle =x^{2}+6^{2}\,}$ ${\displaystyle (2x)^{2}-x^{2}\,}$ ${\displaystyle =6^{2}\,}$ ${\displaystyle 4+4x+x^{2}-x^{2}\,}$ ${\displaystyle =6^{2}\,}$ ${\displaystyle 4+4x\,}$ ${\displaystyle =36\,}$ ${\displaystyle 4x\,}$ ${\displaystyle =36-4\,}$ ${\displaystyle {\frac {4x}{4}}\,}$ ${\displaystyle ={\frac {32}{4}}\,}$ ${\displaystyle x\,}$ ${\displaystyle =8\,}$