Jump to content

User:Eionides/Sandbox

From Wikipedia, the free encyclopedia

Iterated filtering algorithms are a tool for Maximum Likelihood inference on partially observed dynamic systems. Stochastic perturbations to the unknown parameters are used to explore the parameter space. Applying sequential Monte Carlo (the Particle Filter) to this extended model results in the selection of the parameter values that are more consistent with the data. Appropriately constructed procedures, iterating with successively diminished perturbations, converge to the maximum likelihood estimate.[1][2] Iterated filtering methods have so far been used most extensively to study the infectious disease transmission dynamics. Case studies include cholera,[3][4] influenza,[5][6] malaria[7] and measles.[8][4] Other areas which have been proposed to be suitable for these methods include ecological dynamics[9] and finance.[10]

Overview

[edit]

The data are a time series collected at times . The dynamic system is modeled by a Markov process which is generated by a function in the sense that

      

where is a vector of unknown parameters and is some random quantity that is drawn independently each time is evaluated. An initial condition at some time , together with a measurement density completes the specification of a partially observed Markov process. A basic iterated filtering algorithm is as follows:

Input

A partially observed Markov model specified as above
Algorithmic parameters: Monte Carlo sample size ; number of iterations ; cooling parameters and ; covariance matrix ; initial parameter vector

Procedure: Iterated filtering

for to
set for
draw
set
for to
set
set
draw such that
set
draw
set to the sample mean of , where has components
set to the sample variance of
set

Output

maximum likelihood estimate

References

[edit]
  1. ^ Ionides, E. L.; Bretó, C.; King, A. A. (2006). "Inference for nonlinear dynamical systems". Proceedings of the National Academy of Sciences of the USA. 103 (49): 18438–18443. doi:10.1073/pnas.0603181103. PMC 3020138. PMID 17121996.{{cite journal}}: CS1 maint: date and year (link)
  2. ^ Ionides, E. L. (2011). "Iterated filtering". Annals of Statistics (Prepublished Online). 39 (3). doi:10.1214/11-AOS886. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  3. ^ King, Aaron A.; Ionides, Edward L.; Pascual, Mercedes; Bouma, Menno J. (2008). "Inapparent infections and cholera dynamics". Nature. 454 (7206): 877–880. doi:10.1038/nature07084. PMID 18704085.{{cite journal}}: CS1 maint: date and year (link)
  4. ^ a b Bretó, Carles; He, Daihai; Ionides, Edward L.; King, Aaron A. (2009). "Time series analysis via mechanistic models". Annals of Applied Statistics. 3: 319–348. doi:10.1214/08-AOAS201.{{cite journal}}: CS1 maint: date and year (link)
  5. ^ He, D. (2011). "Mechanistic modelling of the three waves of the 1918 influenza pandemic". Theoretical Ecology. 4 (2): 1–6. doi:10.1007/s12080-011-0123-3.
  6. ^ Camacho, Anton; Ballesteros, Sébastien; Graham, Andrea L.; Carrat, Fabrice; Ratmann, Oliver; Cazelles, Bernard (2011). "Explaining rapid reinfections in multiple-wave influenza outbreaks: Tristan da Cunha 1971 epidemic as a case study". Proceedings of the Royal Society B: Biological Sciences (Prepublished Online). 278 (1725): 3635–3643. doi:10.1098/rspb.2011.0300. PMC 3203494. PMID 21525058.{{cite journal}}: CS1 maint: date and year (link)
  7. ^ Laneri, K. (2010). "Forcing versus feedback: Epidemic malaria and monsoon rains in NW India". PLOS Computational Biology. 6: e1000898. doi:10.1371/journal.pcbi.1000898. PMID PMC2932675. {{cite journal}}: Check |pmid= value (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)CS1 maint: unflagged free DOI (link)
  8. ^ He, D. (2010). "Plug-and-play inference for disease dynamics: measles in large and small towns as a case study". Journal of the Royal Society Interface. 7: 271–283. doi:10.1098/rsif.2009.0151. PMID PMC2842609. {{cite journal}}: Check |pmid= value (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  9. ^ Ionides, E. L.. (2011). "Discussion on "Feature Matching in Time Series Modeling" by Y. Xia and H. Tong". Statistical Science (In Press). 26. doi:10.1214/11-STS345C.
  10. ^ "Discussion of "Particle Markov chain Monte Carlo methods" by C. Andrieu, A. Doucet and R. Holenstein". Journal of the Royal Statistical Society, Series B (Statistical Methodology). 72: 314–315. 2010. doi:10.1111/j.1467-9868.2009.00736.x.