From Wikipedia, the free encyclopedia
E
+
S
⟶
⟵
k
1
k
−
1
E
S
⟶
k
2
E
I
⟶
k
3
E
+
P
{\displaystyle {\begin{aligned}E+S{\underset {k_{-1}}{\overset {k_{1}}{\begin{smallmatrix}\displaystyle \longrightarrow \\\displaystyle \longleftarrow \end{smallmatrix}}}}ES{\overset {k_{2}}{\longrightarrow }}EI{\overset {k_{3}}{\longrightarrow }}E+P\end{aligned}}}
So we can write down the following kinetic equations where we use the quasi-steady-state assumptions for both intermediate enzyme complexes:
d
[
P
]
d
t
=
k
3
[
E
I
]
d
[
E
I
]
d
t
=
k
2
[
E
S
]
−
k
3
[
E
I
]
=
!
0
d
[
E
S
]
d
t
=
k
1
[
E
]
[
S
]
−
[
E
S
]
(
k
−
1
+
k
2
)
=
!
0
{\displaystyle {\begin{aligned}{\frac {d{[}P{]}}{dt}}&=k_{3}{[}EI{]}\\{\frac {d{[}EI{]}}{dt}}&=k_{2}{[}ES{]}-k_{3}{[}EI{]}\;{\overset {!}{=}}0\;\\{\frac {d{[}ES{]}}{dt}}&=k_{1}{[}E{]}{[}S{]}-{[}ES{]}(k_{-1}+k_{2})\;{\overset {!}{=}}0\;\\\end{aligned}}}
Again we can write down the total enzyme concentration and assume it to be constant over the time scale in question
[
E
]
0
=
[
E
]
+
[
E
S
]
+
[
E
I
]
=
!
const
{\displaystyle {\begin{aligned}{[}E{]}_{0}&={[}E{]}+{[}ES{]}+{[}EI{]}\;{\overset {!}{=}}\;{\text{const}}\end{aligned}}}
Now again we express [ES] in terms of the other variables
0
=
k
1
[
S
]
(
[
E
]
0
−
[
E
S
]
−
[
E
I
]
)
−
[
E
S
]
(
k
−
1
+
k
2
)
k
1
[
S
]
(
[
E
]
0
−
[
E
I
]
)
=
k
1
[
S
]
[
E
S
]
+
[
E
S
]
(
k
−
1
+
k
2
)
[
S
]
(
[
E
]
0
−
[
E
I
]
)
=
[
S
]
[
E
S
]
+
[
E
S
]
(
k
−
1
+
k
2
)
k
−
1
⏟
K
M
[
S
]
(
[
E
]
0
−
[
E
I
]
)
=
(
K
M
+
[
S
]
)
[
E
S
]
[
E
S
]
=
[
S
]
(
[
E
]
0
−
[
E
I
]
)
K
M
+
[
S
]
{\displaystyle {\begin{aligned}0&=k_{1}{[}S{]}({[}E{]}_{0}-{[}ES{]}-{[}EI{]})-{[}ES{]}(k_{-1}+k_{2})\\k_{1}{[}S{]}({[}E{]}_{0}-{[}EI{]})&=k_{1}{[}S{]}{[}ES{]}+{[}ES{]}(k_{-1}+k_{2})\\{[}S{]}({[}E{]}_{0}-{[}EI{]})&={[}S{]}{[}ES{]}+{[}ES{]}\underbrace {\frac {(k_{-1}+k_{2})}{k_{-1}}} _{K_{M}}\\{[}S{]}({[}E{]}_{0}-{[}EI{]})&=(K_{M}+{[}S{]}){[}ES{]}\\{[}ES{]}&={\frac {{[}S{]}({[}E{]}_{0}-{[}EI{]})}{K_{M}+{[}S{]}}}\end{aligned}}}
Now we plug this into the equation for
d
[
E
I
]
/
d
t
{\displaystyle d{[}EI{]}/dt}
and we can express [EI] in terms of the other variables
0
=
k
2
[
E
S
]
−
k
3
[
E
I
]
0
=
k
2
[
S
]
(
[
E
]
0
−
[
E
I
]
)
K
M
+
[
S
]
−
k
3
[
E
I
]
0
=
k
2
[
S
]
[
E
]
0
K
M
+
[
S
]
−
k
2
[
S
]
[
E
I
]
K
M
+
[
S
]
−
k
3
[
E
I
]
k
2
[
S
]
[
E
]
0
K
M
+
[
S
]
=
(
k
2
[
S
]
K
M
+
[
S
]
+
k
3
)
[
E
I
]
[
E
I
]
=
k
2
[
S
]
[
E
]
0
(
K
M
+
[
S
]
)
(
k
2
[
S
]
K
M
+
[
S
]
+
k
3
)
[
E
I
]
=
k
2
[
S
]
[
E
]
0
k
2
[
S
]
+
k
3
(
K
M
+
[
S
]
)
{\displaystyle {\begin{aligned}0&=k_{2}{[}ES{]}-k_{3}{[}EI{]}\\0&=k_{2}{\frac {{[}S{]}({[}E{]}_{0}-{[}EI{]})}{K_{M}+{[}S{]}}}-k_{3}{[}EI{]}\\0&=k_{2}{\frac {{[}S{]}{[}E{]}_{0}}{K_{M}+{[}S{]}}}-k_{2}{\frac {{[}S{]}{[}EI{]}}{K_{M}+{[}S{]}}}-k_{3}{[}EI{]}\\k_{2}{\frac {{[}S{]}{[}E{]}_{0}}{K_{M}+{[}S{]}}}&=(k_{2}{\frac {{[}S{]}}{K_{M}+{[}S{]}}}+k_{3}){[}EI{]}\\{[}EI{]}&=k_{2}{\frac {{[}S{]}{[}E{]}_{0}}{(K_{M}+{[}S{]})(k_{2}{\frac {{[}S{]}}{K_{M}+{[}S{]}}}+k_{3})}}\\{[}EI{]}&=k_{2}{\frac {{[}S{]}{[}E{]}_{0}}{k_{2}{[}S{]}+k_{3}(K_{M}+{[}S{]})}}\end{aligned}}}
Finally we can find again an expression for the rate of substrate conversion to product
d
[
P
]
d
t
=
v
0
=
k
3
[
E
I
]
=
k
3
k
2
[
E
]
0
[
S
]
k
3
K
M
+
[
S
]
(
k
2
+
k
3
)
d
[
P
]
d
t
=
k
3
k
2
k
2
+
k
3
⏟
k
c
a
t
⋅
[
E
]
0
[
S
]
k
3
k
2
+
k
3
K
M
⏟
K
M
′
+
[
S
]
v
0
=
k
c
a
t
[
S
]
[
E
]
0
K
M
′
+
[
S
]
{\displaystyle {\begin{aligned}{\frac {d{[}P{]}}{dt}}&=v_{0}=k_{3}{[}EI{]}=k_{3}k_{2}{\frac {{[}E{]}_{0}{[}S{]}}{k_{3}K_{M}+{[}S{]}(k_{2}+k_{3})}}\\{\frac {d{[}P{]}}{dt}}&=\underbrace {\dfrac {k_{3}k_{2}}{k_{2}+k_{3}}} _{k_{cat}}\cdot {\frac {{[}E{]}_{0}{[}S{]}}{\underbrace {{\frac {k_{3}}{k_{2}+k_{3}}}K_{M}} _{K_{M}^{\prime }}+{[}S{]}}}\\v_{0}&=k_{cat}{\frac {{[}S{]}{[}E{]}_{0}}{K_{M}^{\prime }+{[}S{]}}}\end{aligned}}}
In the last equation we have written a Michaelis-Menten like formula with modified constants, thus in this case we have for the measured constants the following functions
K
M
′
=
d
e
f
k
3
k
2
+
k
3
K
M
=
k
3
k
2
+
k
3
⋅
k
2
+
k
−
1
k
1
k
c
a
t
=
d
e
f
k
3
k
2
k
2
+
k
3
{\displaystyle {\begin{aligned}K_{M}^{\prime }\ &{\stackrel {\mathrm {def} }{=}}\ {\frac {k_{3}}{k_{2}+k_{3}}}K_{M}={\frac {k_{3}}{k_{2}+k_{3}}}\cdot {\frac {k_{2}+k_{-1}}{k_{1}}}\\k_{cat}\ &{\stackrel {\mathrm {def} }{=}}\ {\dfrac {k_{3}k_{2}}{k_{2}+k_{3}}}\end{aligned}}}
We see that for the limiting case
k
3
≫
k
2
{\displaystyle k_{3}\gg k_{2}}
, thus when the last step from EI to E + P is much faster than the previous step, we get again the original equation. Mathematically we have then
K
M
′
≈
K
M
{\displaystyle K_{M}^{\prime }\approx K_{M}}
and
k
c
a
t
≈
k
2
{\displaystyle k_{cat}\approx k_{2}}
.