User:JrandWP/sandbox/Numbers
Appearance
< User:JrandWP | sandbox
See documentation in the documentation page.
List of numbers from 1 to 1000
[edit]1 to 100
[edit]Numbers | Prime factors | Numbers | Level | List of factors[1] | Notes |
---|---|---|---|---|---|
1 | 1 | 0 | 1 | [2][3] | |
2 | 1 | 1 | 1, 2 | [4][3] | |
3 | 1 | 1 | 1, 3 | [4][5] | |
4 | 2 | 2 | 1, 2, 4 | [6][3] | |
5 | 1 | 1 | 1, 5 | [4][7] | |
6 | 2 | 1 | 1, 2, 3, 6 | [8][3] | |
7 | 1 | 1 | 1, 7 | [4][9] | |
8 | 3 | 3 | 1, 2, 4, 8 | [10][3] | |
9 | 2 | 2 | 1, 3, 9 | [6][5] | |
10 | 2 | 1 | 1, 2, 5, 10 | [8][5] | |
11 | 1 | 1 | 1, 11 | [4][11] | |
12 | 3 | 2 | 1, 2, 3, 4, 6, 12 | [12][3] | |
13 | 1 | 1 | 1, 13 | [4][13] | |
14 | 2 | 1 | 1, 2, 7, 14 | [8][7] | |
15 | 2 | 1 | 1, 3, 5, 15 | [8][9] | |
16 | 4 | 4 | 1, 2, 4, 8, 16 | [14][3] | |
17 | 1 | 1 | 1, 17 | [4][15] | |
18 | 3 | 2 | 1, 2, 3, 6, 9, 18 | [12][5] | |
19 | 1 | 1 | 1, 19 | [4][16] | |
20 | 3 | 2 | 1, 2, 4, 5, 10, 20 | [12][7] | |
21 | 2 | 1 | 1, 3, 7, 21 | [8][11] | |
22 | 2 | 1 | 1, 2, 11, 22 | [8][13] | |
23 | 1 | 1 | 1, 23 | [4][17] | |
24 | 4 | 3 | 1, 2, 3, 4, 6, 8, 12, 24 | [18][3] | |
25 | 2 | 2 | 1, 5, 25 | [6][7] | |
26 | 2 x 13 | 2 | 1 | 1, 2, 13, 26 | [8][15] |
27 | 3 x 3 x 3 | 3 | 3 | 1, 3, 9, 27 | [10][5] |
28 | 2 x 2 x 7 | 3 | 2 | 1, 2, 4, 7, 14, 28 | [12][9] |
29 | 29 | 1 | 1 | 1, 29 | [4][19] |
30 | 2 x 3 x 5 | 3 | 1 | 1, 2, 3, 5, 6, 10, 15, 30 | [20][3] |
31 | 31 | 1 | 1 | 1, 31 | [4][21] |
32 | 2 x 2 x 2 x 2 x 2 | 5 | 5 | 1, 2, 4, 8, 16, 32 | [22][3] |
33 | 3 x 11 | 2 | 1 | 1, 3, 11, 33 | [8][16] |
34 | 2 x 17 | 2 | 1 | 1, 2, 17, 34 | [8][17] |
35 | 5 x 7 | 2 | 1 | 1, 5, 7, 35 | [8][19] |
36 | 2 x 2 x 3 x 3 | 4 | 2 | 1, 2, 3, 4, 6, 9, 12, 18, 36 | [23][3] |
37 | 37 | 1 | 1 | 1, 37 | [4][24] |
38 | 2 x 19 | 2 | 1 | 1, 2, 19, 38 | [8][21] |
39 | 3 x 13 | 2 | 1 | 1, 3, 13, 39 | [8][24] |
40 | 2 x 2 x 2 x 5 | 4 | 3 | 1, 2, 4, 5, 8, 10, 20, 40 | [18][5] |
41 | 41 | 1 | 1 | 1, 41 | [4][25] |
42 | 2 x 3 x 7 | 3 | 1 | 1, 2, 3, 6, 7, 14, 21, 42 | [20][5] |
43 | 43 | 1 | 1 | 1, 43 | [4][26] |
44 | 2 x 2 x 11 | 3 | 2 | 1, 2, 4, 11, 22, 44 | [12][11] |
45 | 3 x 3 x 5 | 3 | 2 | 1, 3, 5, 9, 15, 45 | [12][13] |
46 | 2 x 23 | 2 | 1 | 1, 2, 23, 46 | [8][25] |
47 | 47 | 1 | 1 | 1, 47 | [4][27] |
48 | 2 x 2 x 2 x 2 x 3 | 5 | 4 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 | [28][3] |
49 | 7 x 7 | 2 | 2 | 1, 7, 49 | [6][9] |
50 | 2 x 5 x 5 | 3 | 2 | 1, 2, 5, 10, 25, 50 | [12][15] |
51 | 3 x 17 | 2 | 1 | 1, 3, 17, 51 | [8][26] |
52 | 2 x 2 x 13 | 3 | 2 | 1, 2, 4, 13, 26, 52 | [12][16] |
53 | 53 | 1 | 1 | 1, 53 | [4][29] |
54 | 2 x 3 x 3 x 3 | 4 | 3 | 1, 2, 3, 6, 9, 18, 27, 54 | [18][7] |
55 | 5 x 11 | 2 | 1 | 1, 5, 11, 55 | [8][27] |
56 | 2 x 2 x 2 x 7 | 4 | 3 | 1, 2, 4, 7, 8, 14, 28, 56 | [18][9] |
57 | 3 x 19 | 2 | 1 | 1, 3, 19, 57 | [8][29] |
58 | 2 x 29 | 2 | 1 | 1, 2, 29, 58 | [8][30] |
59 | 59 | 1 | 1 | 1, 59 | [4][30] |
60 | 2 x 2 x 3 x 5 | 4 | 2 | 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 | [31][3] |
61 | 61 | 1 | 1 | 1, 61 | [4] |
62 | 2 x 31 | 2 | 1 | 1, 2, 31, 62 | [8] |
63 | 3 x 3 x 7 | 3 | 2 | 1, 3, 7, 9, 21, 63 | [12] |
64 | 2 x 2 x 2 x 2 x 2 x 2 | 6 | 1 | 1, 2, 4, 8, 16, 32, 64 | [32] |
65 | 5 x 13 | 2 | 1 | 1, 5, 13, 65 | [8] |
66 | 2 x 3 x 11 | 3 | 1 | 1, 2, 3, 6, 11, 22, 33, 66 | [20] |
67 | 67 | 1 | 1 | 1, 67 | [4] |
68 | 2 x 2 x 17 | 3 | 2 | 1, 2, 4, 17, 34, 68 | [12] |
69 | 3 x 23 | 2 | 1 | 1, 3, 23, 69 | [8] |
70 | 2 x 5 x 7 | 3 | 1 | 1, 2, 5, 7, 10, 14, 35, 70 | [20] |
71 | 71 | 1 | 1 | 1, 71 | [4] |
72 | 2 x 2 x 2 x 3 x 3 | 5 | 2 | 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72 | [33] |
73 | 73 | 1 | 1 | 1, 73 | [4] |
74 | 2 x 37 | 2 | 1 | 1, 2, 37, 74 | [8] |
75 | 3 x 5 x 5 | 3 | 2 | 1, 3, 5, 15, 25, 75 | [12] |
76 | 2 x 2 x 19 | 3 | 2 | 1, 2, 4, 19, 38, 76 | [12] |
77 | 7 x 11 | 2 | 1 | 1, 7, 11, 77 | [8] |
78 | 2 x 3 x 13 | 3 | 1 | 1, 2, 3, 6, 13, 26, 39, 78 | [20] |
79 | 79 | 1 | 1 | 1, 79 | [4] |
80 | 2 x 2 x 2 x 2 x 5 | 5 | 4 | 1, 2, 4, 5, 8, 10, 16, 20, 40, 80 | [28] |
81 | 3 x 3 x 3 x 3 | 4 | 4 | 1, 3, 9, 27, 81 | [14] |
82 | 2 x 41 | 2 | 1 | 1, 2, 41, 82 | [8] |
83 | 83 | 1 | 1 | 1, 83 | [4] |
84 | 2 x 2 x 3 x 7 | 4 | 2 | 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84 | [31] |
85 | 5 x 17 | 2 | 1 | 1, 5, 17, 85 | [8] |
86 | 2 x 43 | 2 | 1 | 1, 2, 43, 86 | [8] |
87 | 3 x 29 | 2 | 1 | 1, 3, 29, 87 | [8] |
88 | 2 x 2 x 2 x 11 | 4 | 3 | 1, 2, 4, 8, 11, 22, 44, 88 | [18] |
89 | 89 | 1 | 1 | 1, 89 | [4] |
90 | 2 x 3 x 3 x 5 | 4 | 2 | 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90 | [31] |
91 | 7 x 13 | 2 | 1 | 1, 7, 13, 91 | [8] |
92 | 2 x 2 x 23 | 3 | 2 | 1, 2, 4, 23, 46, 92 | [12] |
93 | 3 x 31 | 2 | 1 | 1, 3, 31, 93 | [8] |
94 | 2 x 47 | 2 | 1 | 1, 2, 47, 94 | [8] |
95 | 5 x 19 | 2 | 1 | 1, 5, 19, 95 | [8] |
96 | 2 x 2 x 2 x 2 x 2 x 3 | 6 | 5 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96 | [34] |
97 | 97 | 1 | 1 | 1, 97 | [4] |
98 | 2 x 7 x 7 | 3 | 2 | 1, 2, 7, 14, 49, 98 | [12] |
99 | 3 x 3 x 11 | 3 | 2 | 1, 3, 9, 11, 33, 99 | [12] |
100 | 2 x 2 x 5 x 5 | 4 | 2 | 1, 2, 4, 5, 10, 20, 25, 50, 100 | [23] |
101 to 200
[edit]Numbers | Prime factors | Numbers | Level | List of factors[1] | Notes |
---|---|---|---|---|---|
101 | 101 | 1 | 1 | 1, 101 | [4] |
102 | 2 x 3 x 17 | 3 | 1 | 1, 2, 3, 6, 17, 34, 51, 102 | [20] |
103 | 103 | 1 | 1 | 1, 103 | [4] |
104 | 2 x 2 x 2 x 13 | 4 | 3 | 1, 2, 4, 8, 13, 26, 52, 104 | [18] |
105 | 3 x 5 x 7 | 3 | 1 | 1, 3, 5, 7, 15, 21, 35, 105 | [20] |
106 | 2 x 53 | 2 | 1 | 1, 2, 53, 106 | [8] |
107 | 107 | 1 | 1 | 1, 107 | [4] |
108 | 2 x 2 x 3 x 3 x 3 | 5 | 2 | 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108 | [33] |
109 | 109 | 1 | 1 | 1, 109 | [4] |
110 | 2 x 5 x 11 | 3 | 1 | 1, 2, 5, 10, 11, 22, 55, 110 | [20] |
111 | 3 x 37 | 2 | 1 | 1, 3, 37, 111 | [8] |
112 | 2 x 2 x 2 x 2 x 7 | 5 | 4 | 1, 2, 4, 7, 8, 14, 16, 28, 56, 112 | [28] |
113 | 113 | 1 | 1 | 1, 113 | [4] |
114 | 2 x 3 x 19 | 3 | 1 | 1, 2, 3, 6, 19, 38, 57, 114 | [20] |
115 | 5 x 23 | 2 | 1 | 1, 5, 23, 115 | [8] |
116 | 2 x 2 x 29 | 3 | 2 | 1, 2, 4, 29, 58, 116 | [12] |
117 | 3 x 3 x 13 | 3 | 2 | 1, 3, 9, 13, 39, 117 | [12] |
118 | 2 x 59 | 2 | 1 | 1, 2, 59, 118 | [8] |
119 | 7 x 17 | 1 | 1 | 1, 7, 17, 119 | [4] |
120 | 2 x 2 x 2 x 3 x 5 | 5 | 3 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120 | [35] |
121 | 11 x 11 | 2 | 2 | 1, 11, 121 | [6] |
122 | 2 x 61 | 2 | 1 | 1, 2, 61, 122 | [8] |
123 | 3 x 41 | 2 | 1 | 1, 3, 41, 123 | [8] |
124 | 2 x 2 x 31 | 3 | 2 | 1, 2, 4, 31, 62, 124 | [12] |
125 | 5 x 5 x 5 | 3 | 3 | 1, 5, 25, 125 | [10] |
126 | 2 x 3 x 3 x 7 | 4 | 2 | 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126 | [31] |
127 | 127 | 1 | 1 | 1, 127 | [4] |
128 | 2 x 2 x 2 x 2 x 2 x 2 x 2 | 7 | 7 | 1, 2, 4, 8, 16, 32, 64, 128 | [36] |
129 | 3 x 43 | 2 | 1 | 1, 3, 43, 129 | [8] |
130 | 2 x 5 x 13 | 3 | 1 | 1, 2, 5, 10, 13, 26, 65, 130 | [20] |
131 | 131 | 1 | 1 | 1, 131 | [4] |
132 | 2 x 2 x 3 x 11 | 4 | 2 | 1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132 | [31] |
133 | 7 x 19 | 2 | 1 | 1, 7, 19, 133 | [8] |
134 | 2 x 67 | 2 | 1 | 1, 2, 67, 134 | [8] |
135 | 3 x 3 x 3 x 5 | 4 | 3 | 1, 3, 5, 9, 15, 27, 45, 135 | [18] |
136 | 2 x 2 x 2 x 17 | 4 | 3 | 1, 2, 4, 8, 17, 34, 68, 136 | [18] |
137 | 137 | 1 | 1 | 1, 137 | [4] |
138 | 2 x 3 x 23 | 3 | 1 | 1, 2, 3, 6, 23, 46, 69, 138 | [20] |
139 | 139 | 1 | 1 | 1, 139 | [4] |
140 | 2 x 2 x 5 x 7 | 4 | 2 | 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140 | [31] |
141 | 3 x 47 | 2 | 1 | 1, 3, 47, 141 | [8] |
142 | 2 x 71 | 2 | 1 | 1, 2, 71, 142 | [8] |
143 | 11 x 13 | 2 | 1 | 1, 11, 13, 143 | [8] |
144 | 2 x 2 x 2 x 2 x 3 x 3 | 6 | 4 | 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144 | [37] |
145 | 5 x 29 | 2 | 1 | 1, 5, 29, 145 | [8] |
146 | 2 x 73 | 2 | 1 | 1, 2, 73, 146 | [8] |
147 | 3 x 7 x 7 | 3 | 2 | 1, 3, 7, 21, 49, 147 | [12] |
148 | 2 x 2 x 37 | 3 | 2 | 1, 2, 4, 37, 74, 148 | [12] |
149 | 149 | 1 | 1 | 1, 149 | [4] |
150 | 2 x 3 x 5 x 5 | 4 | 2 | 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150 | [31] |
151 | 151 | 1 | 1 | 1, 151 | [4] |
152 | 2 x 2 x 2 x 19 | 4 | 3 | 1, 2, 4, 8, 19, 38, 76, 152 | [18] |
153 | 3 x 3 x 17 | 3 | 2 | 1, 3, 9, 17, 51, 153 | [12] |
154 | 2 x 7 x 11 | 3 | 1 | 1, 2, 7, 11, 14, 22, 77, 154 | [20] |
155 | 5 x 31 | 2 | 1 | 1, 5, 31, 155 | [8] |
156 | 2 x 2 x 3 x 13 | 4 | 2 | 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156 | [31] |
157 | 157 | 1 | 1 | 1, 157 | [4] |
158 | 2 x 79 | 2 | 1 | 1, 2, 79, 158 | [8] |
159 | 3 x 53 | 2 | 1 | 1, 3, 53, 159 | [8] |
160 | 2 x 2 x 2 x 2 x 2 x 5 | 6 | 5 | 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 80, 160 | [34] |
161 | 7 x 23 | 2 | 1 | 1, 7, 23, 161 | [8] |
162 | 2 x 3 x 3 x 3 x 3 | 5 | 4 | 1, 2, 3, 6, 9, 18, 27, 54, 81, 162 | [28] |
163 | 163 | 1 | 1 | 1, 163 | [4] |
164 | 2 x 2 x 41 | 3 | 2 | 1, 2, 4, 41, 82, 164 | [12] |
165 | 3 x 5 x 11 | 3 | 1 | 1, 3, 5, 11, 15, 33, 55, 165 | [20] |
166 | 2 x 83 | 2 | 1 | 1, 2, 83, 166 | [8] |
167 | 167 | 1 | 1 | 1, 167 | [4] |
168 | 2 x 2 x 2 x 3 x 7 | 5 | 3 | 1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 28, 42, 56, 84, 168 | [35] |
169 | 13 x 13 | 2 | 2 | 1, 13, 169 | [6] |
170 | 2 x 5 x 17 | 3 | 1 | 1, 2, 5, 10, 17, 34, 85, 170 | [20] |
171 | 3 x 3 x 19 | 3 | 2 | 1, 3, 9, 19, 57, 171 | [12] |
172 | 2 x 2 x 43 | 3 | 2 | 1, 2, 4, 43, 86, 172 | [12] |
173 | 173 | 1 | 1 | 1, 173 | [4] |
174 | 2 x 3 x 29 | 3 | 1 | 1, 2, 3, 6, 29, 58, 87, 174 | [20] |
175 | 5 x 5 x 7 | 3 | 2 | 1, 5, 7, 25, 35, 175 | [12] |
176 | 2 x 2 x 2 x 2 x 11 | 5 | 4 | 1, 2, 4, 8, 11, 16, 22, 44, 88, 176 | [28] |
177 | 3 x 59 | 2 | 1 | 1, 3, 59, 177 | [8] |
178 | 2 x 89 | 2 | 1 | 1, 2, 89, 178 | [8] |
179 | 179 | 1 | 1 | 1, 179 | [4] |
180 | 2 x 2 x 3 x 3 x 5 | 5 | 2 | 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180 | [38] |
181 | 181 | 1 | 1 | 1, 181 | [4] |
182 | 2 x 7 x 13 | 3 | 1 | 1, 2, 7, 13, 14, 26, 91, 182 | [20] |
183 | 3 x 61 | 2 | 1 | 1, 3, 61, 183 | [8] |
184 | 2 x 2 x 2 x 23 | 4 | 3 | 1, 2, 4, 8, 23, 46, 92, 184 | [18] |
185 | 5 x 37 | 2 | 1 | 1, 5, 37, 185 | [8] |
186 | 2 x 3 x 31 | 3 | 1 | 1, 2, 3, 6, 31, 62, 93, 186 | [20] |
187 | 11 x 17 | 2 | 1 | 1, 11, 17, 187 | [8] |
188 | 2 x 2 x 47 | 3 | 2 | 1, 2, 4, 47, 94, 188 | [12] |
189 | 3 x 3 x 3 x 7 | 4 | 3 | 1, 3, 7, 9, 21, 27, 63, 189 | [18] |
190 | 2 x 5 x 19 | 3 | 1 | 1, 2, 5, 10, 19, 38, 95, 190 | [20] |
191 | 191 | 1 | 1 | 1, 191 | [4] |
192 | 2 x 2 x 2 x 2 x 2 x 2 x 3 | 7 | 6 | 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 192 | [39] |
193 | 193 | 1 | 1 | 1, 193 | [4] |
194 | 2 x 97 | 2 | 1 | 1, 2, 97, 194 | [8] |
195 | 3 x 5 x 13 | 3 | 1 | 1, 3, 5, 13, 15, 39, 65, 195 | [20] |
196 | 2 x 2 x 7 x 7 | 4 | 2 | 1, 2, 4, 7, 14, 28, 49, 98, 196 | [23] |
197 | 197 | 1 | 1 | 1, 197 | [4] |
198 | 2 x 3 x 3 x 11 | 4 | 2 | 1, 2, 3, 6, 9, 11, 18, 22, 33, 66, 99, 198 | [31] |
199 | 199 | 1 | 1 | 1, 199 | [4] |
200 | 2 x 2 x 2 x 5 x 5 | 5 | 3 | 1, 2, 4, 5, 10, 20, 40, 50, 100, 200 | [33] |
201 to 300
[edit]Numbers | Prime factors | Numbers | Level | List of factors[1] | Notes |
---|---|---|---|---|---|
201 | 3 x 67 | 2 | 1 | 1, 3, 67, 201 | [8] |
202 | 2 x 101 | 2 | 1 | 1, 2, 101, 202 | [8] |
203 | 7 x 29 | 2 | 1 | 1, 7, 29, 203 | [8] |
204 | 2 x 2 x 3 x 17 | 4 | 2 | 1, 2, 3, 4, 6, 12, 17, 34, 51, 68, 102, 204 | [31] |
205 | 5 x 41 | 2 | 1 | 1, 5, 41, 205 | [8] |
206 | 2 x 103 | 2 | 1 | 1, 2, 103, 206 | [8] |
207 | 3 x 3 x 23 | 3 | 2 | 1, 3, 9, 23, 69, 207 | [12] |
208 | 2 x 2 x 2 x 2 x 13 | 5 | 4 | 1, 2, 4, 8, 13, 16, 26, 52, 104, 208 | [28] |
209 | 11 x 19 | 2 | 1 | 1, 11, 19, 209 | [8] |
210 | 2 x 3 x 5 x 7 | 4 | 1 | 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 28, 35, 42, 70, 105, 210 | [40] |
211 | 211 | 1 | 1 | 1, 211 | [4] |
212 | 2 x 2 x 53 | 3 | 2 | 1, 2, 4, 53, 106, 212 | [12] |
213 | 3 x 71 | 2 | 1 | 1, 3, 71, 213 | [8] |
214 | 2 x 107 | 2 | 1 | 1, 2, 107, 214 | [8] |
215 | 5 x 43 | 2 | 1 | 1, 5, 43, 215 | [8] |
216 | 2 x 2 x 2 x 3 x 3 x 3 | 6 | 3 | 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 108, 216 | [41] |
217 | 7 x 31 | 2 | 1 | 1, 7, 31, 217 | [8] |
218 | 2 x 109 | 2 | 1 | 1, 2, 109, 218 | [8] |
219 | 3 x 73 | 2 | 1 | 1, 3, 73, 219 | [8] |
220 | 2 x 2 x 5 x 11 | 4 | 2 | 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220 | [31] |
221 | 13 x 17 | 2 | 1 | 1, 13, 17, 221 | [8] |
222 | 2 x 3 x 37 | 3 | 1 | 1, 2, 3, 6, 37, 74, 111, 222 | [20] |
223 | 223 | 1 | 1 | 1, 223 | [4] |
224 | 2 x 2 x 2 x 2 x 2 x 7 | 6 | 5 | 1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 112, 224 | [34] |
225 | 3 x 3 x 5 x 5 | 4 | 2 | 1, 3, 5, 9, 15, 25, 45, 75, 225 | [23] |
226 | 2 x 113 | 2 | 1 | 1, 2, 113, 226 | [8] |
227 | 227 | 1 | 1 | 1, 227 | [4] |
228 | 2 x 2 x 3 x 19 | 4 | 2 | 1, 2, 3, 4, 6, 12, 19, 38, 57, 76, 114, 228 | [31] |
229 | 229 | 1 | 1 | 1, 229 | [4] |
230 | 2 x 5 x 23 | 3 | 1 | 1, 2, 5, 10, 23, 46, 115, 230 | [20] |
231 | 3 x 7 x 11 | 3 | 1 | 1, 3, 7, 11, 21, 33, 77, 231 | [20] |
232 | 2 x 2 x 2 x 29 | 4 | 3 | 1, 2, 4, 8, 29, 58, 116, 232 | [18] |
233 | 233 | 1 | 1 | 1, 233 | [4] |
234 | 2 x 3 x 3 x 13 | 4 | 2 | 1, 2, 3, 6, 9, 13, 18, 26, 39, 78, 117, 234 | [31] |
235 | 5 x 47 | 2 | 1 | 1, 5, 47, 235 | [8] |
236 | 2 x 2 x 59 | 3 | 2 | 1, 2, 4, 59, 118, 236 | [12] |
237 | 3 x 79 | 2 | 1 | 1, 3, 79, 237 | [8] |
238 | 2 x 7 x 17 | 3 | 1 | 1, 2, 7, 14, 17, 238 | [20] |
239 | 239 | 1 | 1 | 1, 239 | [4] |
240 | 2 x 2 x 2 x 2 x 3 x 5 | 6 | 4 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240 | [42] |
241 | 241 | 1 | 1 | 1, 241 | [4] |
242 | 2 x 11 x 11 | 3 | 2 | 1, 2, 11, 22, 121, 242 | [12] |
243 | 3 x 3 x 3 x 3 x 3 | 5 | 5 | 1, 3, 9, 27, 81, 243 | [22] |
244 | 2 x 2 x 61 | 3 | 2 | 1, 2, 4, 61, 122, 246 | [12] |
245 | 5 x 7 x 7 | 3 | 2 | 1, 5, 7, 35, 49, 245 | [12] |
246 | 2 x 3 x 41 | 3 | 1 | 1, 2, 3, 6, 41, 82, 123, 246 | [20] |
247 | 13 x 19 | 2 | 1 | 1, 13, 19, 247 | [8] |
248 | 2 x 2 x 2 x 31 | 4 | 3 | 1, 2, 4, 8, 31, 62, 124, 248 | [18] |
249 | 3 x 83 | 2 | 1 | 1, 3, 83, 249 | [8] |
250 | 2 x 5 x 5 x 5 | 4 | 3 | 1, 2, 5, 10, 25, 50, 125, 250 | [18] |
251 | 251 | 1 | 1 | 1, 251 | [4] |
252 | 2 x 2 x 3 x 3 x 7 | 5 | 2 | 1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 32, 42, 63, 84, 126, 252 | [38] |
253 | 11 x 23 | 2 | 1 | 1, 11, 23, 253 | [8] |
254 | 2 x 127 | 2 | 1 | 1, 2, 127, 254 | [8] |
255 | 3 x 5 x 17 | 3 | 1 | 1, 3, 5, 15, 17, 51, 85, 255 | [20] |
256 | 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 | 8 | 8 | 1, 2, 4, 8, 16, 32, 64, 128, 256 | [43] |
257 | 257 | 1 | 1 | 1, 257 | [4] |
258 | 2 x 3 x 43 | 3 | 1 | 1, 2, 3, 6, 43, 86, 129, 258 | [20] |
259 | 7 x 37 | 2 | 1 | 1, 7, 37, 259 | [8] |
260 | 2 x 2 x 5 x 13 | 4 | 2 | 1, 2, 4, 5, 10, 13, 20, 26, 52, 65, 130, 260 | [31] |
261 | 3 x 3 x 29 | 3 | 2 | 1, 3, 9, 29, 87, 261 | [12] |
262 | 2 x 131 | 2 | 1 | 1, 2, 131, 262 | [8] |
263 | 263 | 1 | 1 | 1, 263 | [4] |
264 | 2 x 2 x 2 x 3 x 11 | 5 | 3 | 1, 2, 3, 4, 6, 8, 11, 12, 22, 24, 33, 44, 66, 132, 264 | [35] |
265 | 5 x 53 | 2 | 1 | 1, 5, 53, 265 | [8] |
266 | 2 x 7 x 19 | 3 | 1 | 1, 2, 7, 14, 19, 38, 113, 266 | [20] |
267 | 3 x 89 | 2 | 1 | 1, 3, 89, 267 | [8] |
268 | 2 x 2 x 67 | 3 | 2 | 1, 2, 4, 67, 134, 268 | [12] |
269 | 269 | 1 | 1 | 1, 269 | [4] |
270 | 2 x 3 x 3 x 3 x 5 | 5 | 3 | 1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 90, 135, 270 | [35] |
271 | 271 | 1 | 1 | 1, 271 | [4] |
272 | 2 x 2 x 2 x 2 x 17 | 5 | 4 | 1, 2, 4, 8, 16, 17, 34, 68, 136, 272 | [28] |
273 | 3 x 7 x 13 | 3 | 1 | 1, 3, 7, 13, 21, 39, 91, 273 | [20] |
274 | 2 x 137 | 2 | 1 | 1, 2, 137, 274 | [8] |
275 | 5 x 5 x 11 | 3 | 2 | 1, 5, 11, 25, 55, 275 | [12] |
276 | 2 x 2 x 3 x 23 | 4 | 2 | 1, 2, 3, 4, 6, 12, 23, 46, 69, 92, 138, 276 | [31] |
277 | 277 | 1 | 1 | 1, 277 | [4] |
278 | 2 x 139 | 2 | 1 | 1, 2, 139, 278 | [8] |
279 | 3 x 3 x 31 | 3 | 2 | 1, 3, 9, 31, 93, 279 | [12] |
280 | 2 x 2 x 2 x 5 x 7 | 5 | 3 | 1, 2, 4, 5, 7, 8, 10, 14, 20, 28, 35, 40, 56, 70, 140, 280 | [35] |
281 | 281 | 1 | 1 | [4] | |
282 | 2 x 3 x 47 | 3 | 1 | [20] | |
283 | 283 | 1 | 1 | [4] | |
284 | 2 x 2 x 71 | 3 | 2 | [12] | |
285 | 3 x 5 x 19 | 3 | 1 | [20] | |
286 | 2 x 11 x 13 | 3 | 1 | [20] | |
287 | 7 x 41 | 2 | 1 | [8] | |
288 | 2 x 2 x 2 x 2 x 2 x 3 x 3 | 7 | 5 | [44] | |
289 | 17 x 17 | 2 | 2 | [6] | |
290 | 2 x 5 x 29 | 3 | 1 | [20] | |
291 | 3 x 97 | 2 | 1 | [8] | |
292 | 2 x 2 x 73 | 3 | 2 | [12] | |
293 | 293 | 1 | 1 | [4] | |
294 | 2 x 3 x 7 x 7 | 4 | 2 | [31] | |
295 | 5 x 59 | 2 | 1 | [8] | |
296 | 2 x 2 x 2 x 37 | 4 | 3 | [18] | |
297 | 3 x 3 x 3 x 11 | 4 | 3 | [18] | |
298 | 2 x 149 | 2 | 1 | [8] | |
299 | 13 x 23 | 2 | 1 | [8] | |
300 | 2 x 2 x 3 x 5 x 5 | 5 | 2 | [38] |
301 to 400
[edit]Numbers | Prime factors | Numbers | Level | List of factors[1] | Notes |
---|---|---|---|---|---|
301 | 7 x 43 | 2 | 1 | [8] | |
302 | 2 x 151 | 2 | 1 | [8] | |
303 | 3 x 101 | 2 | 1 | [8] | |
304 | 2 x 2 x 2 x 2 x 19 | 5 | 4 | [28] | |
305 | 5 x 61 | 2 | 1 | [8] | |
306 | 2 x 3 x 3 x 17 | 4 | 2 | [31] | |
307 | 307 | 1 | 1 | [4] | |
308 | 2 x 2 x 7 x 11 | 4 | 2 | [31] | |
309 | 3 x 103 | 2 | 1 | [8] | |
310 | 2 x 5 x 31 | 3 | 1 | [20] | |
311 | 311 | 1 | 1 | [4] | |
312 | 2 x 2 x 2 x 3 x 13 | 5 | 3 | [35] | |
313 | 313 | 1 | 1 | [4] | |
314 | 2 x 157 | 2 | 1 | [8] | |
315 | 3 x 3 x 5 x 7 | 4 | 2 | [31] | |
316 | 2 x 2 x 79 | 3 | 2 | [12] | |
317 | 317 | 1 | 1 | [4] | |
318 | 2 x 3 x 53 | 3 | 1 | [20] | |
319 | 11 x 29 | 2 | 1 | [8] | |
320 | 2 x 2 x 2 x 2 x 2 x 2 x 5 | 7 | 6 | [39] | |
321 | 3 x 107 | 2 | 1 | [8] | |
322 | 2 x 7 x 23 | 3 | 1 | [20] | |
323 | 17 x 19 | 2 | 1 | [8] | |
324 | 2 x 2 x 3 x 3 x 3 x 3 | 6 | 4 | [37] | |
325 | 5 x 5 x 13 | 3 | 2 | [12] | |
326 | 2 x 163 | 2 | 1 | [8] | |
327 | 3 x 109 | 2 | 1 | [8] | |
328 | 2 x 2 x 2 x 41 | 4 | 3 | [18] | |
329 | 7 x 47 | 2 | 1 | [8] | |
330 | 2 x 3 x 5 x 11 | 4 | 1 | [40] | |
331 | 331 | 1 | 1 | [4] | |
332 | 2 x 2 x 83 | 3 | 2 | [12] | |
333 | 3 x 3 x 37 | 3 | 2 | [12] | |
334 | 2 x 167 | 2 | 1 | [8] | |
335 | 5 x 67 | 2 | 1 | [8] | |
336 | 2 x 2 x 2 x 2 x 3 x 7 | 6 | 4 | [42] | |
337 | 337 | 1 | 1 | [4] | |
338 | 2 x 13 x 13 | 3 | 2 | [12] | |
339 | 3 x 113 | 2 | 1 | [8] | |
340 | 2 x 2 x 5 x 17 | 4 | 2 | [31] | |
341 | 11 x 31 | 2 | 1 | [8] | |
342 | 2 x 3 x 3 x 19 | 4 | 2 | [31] | |
343 | 7 x 7 x 7 | 3 | 3 | [10] | |
344 | 2 x 2 x 2 x 43 | 4 | 3 | [18] | |
345 | 3 x 5 x 23 | 3 | 1 | [20] | |
346 | 2 x 173 | 2 | 1 | [8] | |
347 | 347 | 1 | 1 | [4] | |
348 | 2 x 2 x 3 x 29 | 4 | 2 | [31] | |
349 | 349 | 1 | 1 | [4] | |
350 | 2 x 5 x 5 x 7 | 4 | 2 | [31] | |
351 | 3 x 3 x 3 x 13 | 4 | 3 | [18] | |
352 | 2 x 2 x 2 x 2 x 2 x 11 | 6 | 5 | [34] | |
353 | 353 | 1 | 1 | [4] | |
354 | 2 x 3 x 59 | 3 | 1 | [20] | |
355 | 5 x 71 | 2 | 1 | [8] | |
356 | 2 x 2 x 89 | 3 | 2 | [12] | |
357 | 3 x 7 x 17 | 3 | 1 | [20] | |
358 | 2 x 179 | 2 | 1 | [8] | |
359 | 359 | 1 | 1 | [4] | |
360 | 2 x 2 x 2 x 3 x 3 x 5 | 6 | 3 | [45] | |
361 | 19 x 19 | 2 | 2 | [6] | |
362 | 2 x 181 | 2 | 1 | [8] | |
363 | 3 x 11 x 11 | 3 | 2 | [12] | |
364 | 2 x 2 x 7 x 13 | 4 | 2 | [31] | |
365 | 5 x 73 | 2 | 1 | [8] | |
366 | 2 x 3 x 61 | 3 | 1 | [20] | |
367 | 367 | 1 | 1 | [4] | |
368 | 2 x 2 x 2 x 2 x 23 | 5 | 4 | [28] | |
369 | 3 x 3 x 41 | 3 | 2 | [12] | |
370 | 2 x 5 x 37 | 3 | 1 | [20] | |
371 | 7 x 53 | 2 | 1 | [8] | |
372 | 2 x 2 x 3 x 31 | 4 | 2 | [31] | |
373 | 373 | 1 | 1 | [4] | |
374 | 2 x 11 x 17 | 3 | 1 | [20] | |
375 | 3 x 5 x 5 x 5 | 4 | 3 | [18] | |
376 | 2 x 2 x 2 x 47 | 4 | 3 | [18] | |
377 | 13 x 29 | 2 | 1 | [8] | |
378 | 2 x 3 x 3 x 3 x 7 | 5 | 3 | [35] | |
379 | 379 | 1 | 1 | [4] | |
380 | 2 x 2 x 5 x 19 | 4 | 2 | [31] | |
381 | 3 x 127 | 2 | 1 | [8] | |
382 | 2 x 191 | 2 | 1 | [8] | |
383 | 383 | 1 | 1 | [4] | |
384 | 2 x 2 x 2 x 2 x 2 x 2 x 2 x 3 | 8 | 7 | [46] | |
385 | 5 x 7 x 11 | 3 | 1 | [20] | |
386 | 2 x 193 | 2 | 1 | [8] | |
387 | 3 x 3 x 43 | 3 | 2 | [12] | |
388 | 2 x 2 x 97 | 3 | 2 | [12] | |
389 | 389 | 1 | 1 | [4] | |
390 | 2 x 3 x 5 x 13 | 4 | 1 | [40] | |
391 | 17 x 23 | 2 | 1 | [8] | |
392 | 2 x 2 x 2 x 7 x 7 | 5 | 3 | [33] | |
393 | 3 x 131 | 2 | 1 | [8] | |
394 | 2 x 197 | 2 | 1 | [8] | |
395 | 5 x 79 | 2 | 1 | [8] | |
396 | 2 x 2 x 3 x 3 x 11 | 5 | 2 | [38] | |
397 | 397 | 1 | 1 | [4] | |
398 | 2 x 199 | 2 | 1 | [8] | |
399 | 3 x 7 x 19 | 3 | 1 | [20] | |
400 | 2 x 2 x 2 x 2 x 5 x 5 | 6 | 4 | [37] |
401 to 500
[edit]Numbers | Prime factors | Numbers | Level | List of factors[1] | Notes |
---|---|---|---|---|---|
401 | 401 | 1 | 1 | [4] | |
402 | 2 x 3 x 67 | 3 | 1 | [20] | |
403 | 13 x 31 | 2 | 1 | [8] | |
404 | 2 x 2 x 101 | 3 | 2 | [12] | |
405 | 3 x 3 x 3 x 3 x 5 | 5 | 4 | [28] | |
406 | 2 x 7 x 29 | 3 | 1 | [20] | |
407 | 11 x 37 | 2 | 1 | [8] | |
408 | 2 x 2 x 2 x 3 x 17 | 5 | 3 | [35] | |
409 | 409 | 1 | 1 | [4] | |
410 | 2 x 5 x 41 | 3 | 1 | [20] | |
411 | 3 x 137 | 2 | 1 | [8] | |
412 | 2 x 2 x 103 | 3 | 2 | [12] | |
413 | 7 x 59 | 2 | 1 | [8] | |
414 | 2 x 3 x 3 x 23 | 4 | 2 | [31] | |
415 | 5 x 83 | 2 | 1 | [8] | |
416 | 2 x 2 x 2 x 2 x 2 x 13 | 6 | 5 | [34] | |
417 | 3 x 139 | 2 | 1 | [8] | |
418 | 2 x 11 x 19 | 3 | 1 | [20] | |
419 | 419 | 1 | 1 | [4] | |
420 | 2 x 2 x 3 x 5 x 7 | 5 | 2 | [47] | |
421 | 421 | 1 | 1 | [4] | |
422 | 2 x 211 | 2 | 1 | [8] | |
423 | 3 x 3 x 47 | 3 | 2 | [12] | |
424 | 2 x 2 x 2 x 53 | 4 | 3 | [18] | |
425 | 5 x 5 x 17 | 3 | 2 | [12] | |
426 | 2 x 3 x 71 | 3 | 1 | [20] | |
427 | 7 x 61 | 2 | 1 | [8] | |
428 | 2 x 2 x 107 | 3 | 2 | [12] | |
429 | 3 x 11 x 13 | 3 | 1 | [20] | |
430 | 2 x 5 x 43 | 3 | 1 | [20] | |
431 | 431 | 1 | 1 | [4] | |
432 | 2 x 2 x 2 x 2 x 3 x 3 x 3 | 7 | 4 | [48] | |
433 | 433 | 1 | 1 | [4] | |
434 | 2 x 7 x 31 | 3 | 1 | [20] | |
435 | 3 x 5 x 29 | 3 | 1 | [20] | |
436 | 2 x 2 x 109 | 3 | 2 | [12] | |
437 | 19 x 23 | 2 | 1 | [8] | |
438 | 2 x 3 x 73 | 3 | 1 | [20] | |
439 | 439 | 1 | 1 | [4] | |
440 | 2 x 2 x 2 x 5 x 11 | 5 | 3 | [35] | |
441 | 3 x 3 x 7 x 7 | 4 | 2 | [23] | |
442 | 2 x 13 x 17 | 3 | 1 | [20] | |
443 | 443 | 1 | 1 | [4] | |
444 | 2 x 2 x 3 x 37 | 4 | 2 | [31] | |
445 | 5 x 89 | 2 | 1 | [8] | |
446 | 2 x 223 | 2 | 1 | [8] | |
447 | 3 x 149 | 2 | 1 | [8] | |
448 | 2 x 2 x 2 x 2 x 2 x 2 x 7 | 7 | 6 | [39] | |
449 | 449 | 1 | 1 | [4] | |
450 | 2 x 3 x 3 x 5 x 5 | 5 | 2 | [38] | |
451 | 11 x 41 | 2 | 1 | [8] | |
452 | 2 x 2 x 113 | 3 | 2 | [12] | |
453 | 3 x 151 | 2 | 1 | [8] | |
454 | 2 x 227 | 2 | 1 | [8] | |
455 | 5 x 7 x 13 | 3 | 1 | [20] | |
456 | 2 x 2 x 2 x 3 x 19 | 5 | 3 | [35] | |
457 | 457 | 1 | 1 | [4] | |
458 | 2 x 229 | 2 | 1 | [8] | |
459 | 3 x 3 x 3 x 17 | 4 | 3 | [18] | |
460 | 2 x 2 x 5 x 23 | 4 | 2 | [31] | |
461 | 461 | 1 | 1 | [4] | |
462 | 2 x 3 x 7 x 11 | 4 | 1 | [40] | |
463 | 463 | 1 | 1 | [4] | |
464 | 2 x 2 x 2 x 2 x 29 | 5 | 4 | [28] | |
465 | 3 x 5 x 31 | 3 | 1 | [20] | |
466 | 2 x 233 | 2 | 1 | [8] | |
467 | 467 | 1 | 1 | [4] | |
468 | 2 x 2 x 3 x 3 x 13 | 5 | 2 | [38] | |
469 | 7 x 67 | 2 | 1 | [8] | |
470 | 2 x 5 x 47 | 3 | 1 | [20] | |
471 | 3 x 157 | 2 | 1 | [8] | |
472 | 2 x 2 x 2 x 59 | 4 | 3 | [18] | |
473 | 11 x 43 | 2 | 1 | [8] | |
474 | 2 x 3 x 79 | 3 | 1 | [20] | |
475 | 5 x 5 x 19 | 3 | 2 | [12] | |
476 | 2 x 2 x 7 x 17 | 4 | 2 | [31] | |
477 | 3 x 3 x 53 | 3 | 2 | [12] | |
478 | 2 x 239 | 2 | 1 | [8] | |
479 | 479 | 1 | 1 | [4] | |
480 | 2 x 2 x 2 x 2 x 2 x 3 x 5 | 7 | 5 | [49] | |
481 | 13 x 37 | 2 | 1 | [8] | |
482 | 2 x 241 | 2 | 1 | [8] | |
483 | 3 x 7 x 23 | 3 | 1 | [20] | |
484 | 2 x 2 x 11 x 11 | 4 | 2 | [23] | |
485 | 5 x 97 | 2 | 1 | [8] | |
486 | 2 x 3 x 3 x 3 x 3 x 3 | 6 | 5 | [34] | |
487 | 487 | 1 | 1 | [4] | |
488 | 2 x 2 x 2 x 61 | 4 | 3 | [18] | |
489 | 3 x 163 | 2 | 1 | [8] | |
490 | 2 x 5 x 7 x 7 | 4 | 2 | [31] | |
491 | 491 | 1 | 1 | [4] | |
492 | 2 x 2 x 3 x 41 | 4 | 2 | [31] | |
493 | 17 x 29 | 2 | 1 | [8] | |
494 | 2 x 13 x 19 | 3 | 1 | [20] | |
495 | 3 x 3 x 5 x 11 | 4 | 2 | [31] | |
496 | 2 x 2 x 2 x 2 x 31 | 5 | 4 | [28] | |
497 | 7 x 71 | 2 | 1 | [8] | |
498 | 2 x 3 x 83 | 3 | 1 | [20] | |
499 | 499 | 1 | 1 | [4] | |
500 | 2 x 2 x 5 x 5 x 5 | 5 | 3 | [33] |
501 to 600
[edit]Numbers | Prime factors | Numbers | Level | List of factors[1] | Notes |
---|---|---|---|---|---|
501 | 3 x 167 | 2 | 1 | [8] | |
502 | 2 x 251 | 2 | 1 | [8] | |
503 | 503 | 1 | 1 | [4] | |
504 | 2 x 2 x 2 x 3 x 3 x 7 | 6 | 3 | [45] | |
505 | 5 x 101 | 2 | 1 | [8] | |
506 | 2 x 11 x 23 | 3 | 1 | [20] | |
507 | 3 x 13 x 13 | 3 | 2 | [12] | |
508 | 2 x 2 x 127 | 3 | 2 | [12] | |
509 | 509 | 1 | 1 | [4] | |
510 | 2 x 3 x 5 x 17 | 4 | 1 | [40] | |
511 | 7 x 73 | 2 | 1 | [8] | |
512 | 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 | 9 | 9 | [50] | |
513 | 3 x 3 x 3 x 19 | 4 | 3 | [18] | |
514 | 2 x 257 | 2 | 1 | [8] | |
515 | 5 x 103 | 2 | 1 | [8] | |
516 | 2 x 2 x 3 x 43 | 4 | 2 | [31] | |
517 | 11 x 47 | 2 | 1 | [8] | |
518 | 2 x 7 x 37 | 3 | 1 | [20] | |
519 | 3 x 173 | 2 | 1 | [8] | |
520 | 2 x 2 x 2 x 5 x 13 | 5 | 3 | [35] | |
521 | 521 | 1 | 1 | [4] | |
522 | 2 x 3 x 3 x 29 | 4 | 2 | [31] | |
523 | 523 | 1 | 1 | [4] | |
524 | 2 x 2 x 131 | 3 | 2 | [12] | |
525 | 3 x 5 x 5 x 7 | 4 | 2 | [31] | |
526 | 2 x 263 | 2 | 1 | [8] | |
527 | 17 x 31 | 2 | 1 | [8] | |
528 | 2 x 2 x 2 x 2 x 3 x 11 | 6 | 4 | [42] | |
529 | 23 x 23 | 2 | 2 | [6] | |
530 | 2 x 5 x 53 | 3 | 1 | [20] | |
531 | 3 x 3 x 59 | 3 | 2 | [12] | |
532 | 2 x 2 x 7 x 19 | 4 | 2 | [31] | |
533 | 13 x 41 | 2 | 1 | [8] | |
534 | 2 x 3 x 89 | 3 | 1 | [20] | |
535 | 5 x 107 | 2 | 1 | [8] | |
536 | 2 x 2 x 2 x 67 | 4 | 3 | [18] | |
537 | 3 x 179 | 2 | 1 | [8] | |
538 | 2 x 269 | 2 | 1 | [8] | |
539 | 7 x 7 x 11 | 3 | 2 | [12] | |
540 | 2 x 2 x 3 x 3 x 3 x 5 | 6 | 3 | [45] | |
541 | 541 | 1 | 1 | [4] | |
542 | 2 x 271 | 2 | 1 | [8] | |
543 | 3 x 181 | 2 | 1 | [8] | |
544 | 2 x 2 x 2 x 2 x 2 x 17 | 6 | 5 | [34] | |
545 | 5 x 109 | 2 | 1 | [8] | |
546 | 2 x 3 x 7 x 13 | 4 | 1 | [40] | |
547 | 547 | 1 | 1 | [4] | |
548 | 2 x 2 x 137 | 3 | 2 | [12] | |
549 | 3 x 3 x 61 | 3 | 2 | [12] | |
550 | 2 x 5 x 5 x 11 | 4 | 2 | [31] | |
551 | 19 x 29 | 2 | 1 | [8] | |
552 | 2 x 2 x 2 x 3 x 23 | 5 | 3 | [35] | |
553 | 7 x 79 | 2 | 1 | [8] | |
554 | 2 x 277 | 2 | 1 | [8] | |
555 | 3 x 5 x 37 | 3 | 1 | [20] | |
556 | 2 x 2 x 139 | 3 | 2 | [12] | |
557 | 557 | 1 | 1 | [4] | |
558 | 2 x 3 x 3 x 31 | 4 | 2 | [31] | |
559 | 13 x 43 | 2 | 1 | [8] | |
560 | 2 x 2 x 2 x 2 x 5 x 7 | 6 | 4 | [42] |
References
[edit]- ^ a b c d e f Every number has a factor of 1 and itself and we will fill it in the column.
- ^ Not a prime and no level
- ^ a b c d e f g h i j k l m First number in level. See A025487 (OEIS) for more details.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx cy Perfect one (or prime numbers). See the prime page to display primes from 2 to , or see A000040 (OEIS) for more details.
- ^ a b c d e f g Second number in level
- ^ a b c d e f g h i Perfect two. See A001248 (OEIS) for more details.
- ^ a b c d e Third number in level
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx cy cz da db dc dd de df dg dh di dj dk dl dm dn do dp dq dr ds dt du dv dw dx dy dz ea eb ec ed ee ef eg eh ei ej ek el em en eo ep eq er es et eu ev ew ex ey ez fa fb fc fd fe ff fg fh fi Two one level (or semiprimes). See A006881 (OEIS) for more details
- ^ a b c d e Fourth number in level
- ^ a b c d Perfect three. See A030078 (OEIS) for more details.
- ^ a b c Fifth number in level
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm One one level and one two level. See A054753 (OEIS) for more details.
- ^ a b c Sixth number in level
- ^ a b Perfect four. See A030514 (OEIS) for more details.
- ^ a b c Seventh number of the level
- ^ a b c Eighth number in level
- ^ a b Ninth number in level
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa One one level and one three level. See A065036 (OEIS) for more details.
- ^ a b Tenth number in level
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn Three one level. It is also a sphenic number. See also: A007304 (OEIS) for a sequence of sphemic numbers.
- ^ a b 11th number in level
- ^ a b Perfect five. See A050997 (OEIS) for more details.
- ^ a b c d e f Two two level. See A085986 (OEIS) for more details.
- ^ a b 12th number in level
- ^ a b 13th number in level
- ^ a b 14th number in level
- ^ a b 15th number in level
- ^ a b c d e f g h i j k l One one level and one four level. See A178739 (OEIS) for more details.
- ^ a b 16th number in level
- ^ a b 17th number in level
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am One two level and two one level. See A085987 (OEIS) for more details.
- ^ Perfect six. See A030516 (OEIS) for more details.
- ^ a b c d e One three level and one two level
- ^ a b c d e f g One one level and one five level
- ^ a b c d e f g h i j k l Two one level and one three level
- ^ Perfect seven
- ^ a b c One two level and one four level
- ^ a b c d e f Two two levels and one one level
- ^ a b c One six level and one one level
- ^ a b c d e f Four one level
- ^ Two three level
- ^ a b c d One four level and two one level
- ^ Perfect eight
- ^ One five level and one two level
- ^ a b c One three level, one two level and one one level
- ^ One seven level and one one level
- ^ One two level and three one level
- ^ One three level and one four level
- ^ One five level and two one level
- ^ Perfect nine