R w ( θ ) = [ 1 0 0 0 0 cos θ − sin θ sin θ 0 sin θ cos θ − sin θ 0 − sin θ sin θ cos θ ] 2 3 cos θ = [ sec θ 0 0 0 0 1 − tan θ tan θ 0 tan θ 1 − tan θ 0 − tan θ tan θ 1 ] 2 3 {\displaystyle R_{w}(\theta )\,=\,{\frac {\begin{bmatrix}1&0&0&0\\0&\cos \theta &-\sin \theta &\sin \theta \\0&\sin \theta &\cos \theta &-\sin \theta \\0&-\sin \theta &\sin \theta &\cos \theta \end{bmatrix}}{{\sqrt[{3}]{2}}\cos \theta }}\,=\,{\frac {\begin{bmatrix}\sec \theta &0&0&0\\0&1&-\tan \theta &\tan \theta \\0&\tan \theta &1&-\tan \theta \\0&-\tan \theta &\tan \theta &1\end{bmatrix}}{\sqrt[{3}]{2}}}}
R x ( θ ) = [ cos θ 0 − sin θ − sin θ 0 1 0 0 sin θ 0 cos θ − sin θ sin θ 0 sin θ cos θ ] 2 3 cos θ = [ 1 0 − tan θ − tan θ 0 sec θ 0 0 tan θ 0 1 − tan θ tan θ 0 tan θ 1 ] 2 3 {\displaystyle R_{x}(\theta )\,=\,{\frac {\begin{bmatrix}\cos \theta &0&-\sin \theta &-\sin \theta \\0&1&0&0\\\sin \theta &0&\cos \theta &-\sin \theta \\\sin \theta &0&\sin \theta &\cos \theta \end{bmatrix}}{{\sqrt[{3}]{2}}\cos \theta }}\,=\,{\frac {\begin{bmatrix}1&0&-\tan \theta &-\tan \theta \\0&\sec \theta &0&0\\\tan \theta &0&1&-\tan \theta \\\tan \theta &0&\tan \theta &1\end{bmatrix}}{\sqrt[{3}]{2}}}}
R y ( θ ) = [ cos θ − sin θ 0 − sin θ sin θ cos θ 0 sin θ 0 0 1 0 sin θ − sin θ 0 cos θ ] 2 3 cos θ = [ 1 − tan θ 0 − tan θ tan θ 1 0 tan θ 0 0 sec θ 0 tan θ − tan θ 0 1 ] 2 3 {\displaystyle R_{y}(\theta )\,=\,{\frac {\begin{bmatrix}\cos \theta &-\sin \theta &0&-\sin \theta \\\sin \theta &\cos \theta &0&\sin \theta \\0&0&1&0\\\sin \theta &-\sin \theta &0&\cos \theta \end{bmatrix}}{{\sqrt[{3}]{2}}\cos \theta }}\,=\,{\frac {\begin{bmatrix}1&-\tan \theta &0&-\tan \theta \\\tan \theta &1&0&\tan \theta \\0&0&\sec \theta &0\\\tan \theta &-\tan \theta &0&1\end{bmatrix}}{\sqrt[{3}]{2}}}}
R z ( θ ) = [ cos θ − sin θ − sin θ 0 sin θ cos θ − sin θ 0 sin θ sin θ cos θ 0 0 0 0 1 ] 2 3 cos θ = [ 1 − tan θ − tan θ 0 tan θ 1 − tan θ 0 tan θ tan θ 1 0 0 0 0 sec θ ] 2 3 {\displaystyle R_{z}(\theta )\,=\,{\frac {\begin{bmatrix}\cos \theta &-\sin \theta &-\sin \theta &0\\\sin \theta &\cos \theta &-\sin \theta &0\\\sin \theta &\sin \theta &\cos \theta &0\\0&0&0&1\end{bmatrix}}{{\sqrt[{3}]{2}}\cos \theta }}\,=\,{\frac {\begin{bmatrix}1&-\tan \theta &-\tan \theta &0\\\tan \theta &1&-\tan \theta &0\\\tan \theta &\tan \theta &1&0\\0&0&0&\sec \theta \end{bmatrix}}{\sqrt[{3}]{2}}}}
d e t ( R 4 ( θ ) ) = 1 {\displaystyle det(R_{4}(\theta ))\,=\,1} = x cos θ ( x 2 cos 2 θ + x 2 sin 2 θ ) + x sin θ ( x 2 cos θ sin θ − x 2 sin 2 θ ) + x sin θ ( x 2 cos θ sin θ + x 2 sin 2 θ ) {\displaystyle \,=\,x\cos \theta (x^{2}\cos ^{2}\theta +x^{2}\sin ^{2}\theta )+x\sin \theta (x^{2}\cos \theta \sin \theta -x^{2}\sin ^{2}\theta )+x\sin \theta (x^{2}\cos \theta \sin \theta +x^{2}\sin ^{2}\theta )} = x 3 cos 3 θ + x 3 cos θ sin 2 θ + x 3 cos θ sin 2 θ − x 3 sin 3 θ + x 3 cos θ sin 2 θ + x 3 sin 3 θ {\displaystyle \,=\,x^{3}\cos ^{3}\theta +x^{3}\cos \theta \sin ^{2}\theta +x^{3}\cos \theta \sin ^{2}\theta -x^{3}\sin ^{3}\theta +x^{3}\cos \theta \sin ^{2}\theta +x^{3}\sin ^{3}\theta } = x 3 [ cos 3 θ + 3 cos θ sin 2 θ ] {\displaystyle \,=\,x^{3}[\cos ^{3}\theta +3\cos \theta \sin ^{2}\theta ]} = x 3 [ cos 3 θ + 3 cos θ ( 1 − cos 2 θ ) ] {\displaystyle \,=\,x^{3}[\cos ^{3}\theta +3\cos \theta (1-\cos ^{2}\theta )]} = x 3 [ cos 3 θ + 3 cos θ − 3 cos 3 θ ] {\displaystyle \,=\,x^{3}[\cos ^{3}\theta +3\cos \theta -3\cos ^{3}\theta ]} = x 3 [ 3 cos θ − 2 cos 3 θ ] {\displaystyle \,=\,x^{3}[3\cos \theta -2\cos ^{3}\theta ]} = x 3 [ 3 cos θ − ( 1 / 2 ) ( 3 cos θ + cos 3 θ ) ] {\displaystyle \,=\,x^{3}[3\cos \theta -(1/2)(3\cos \theta +\cos {3\theta })]} = x 3 [ 3 cos θ − ( 3 / 2 ) cos θ + ( 1 / 2 ) cos 3 θ ] {\displaystyle \,=\,x^{3}[3\cos \theta -(3/2)\cos \theta +(1/2)\cos {3\theta }]} = x 3 [ ( 3 cos θ + cos 3 θ ) / 2 ] {\displaystyle \,=\,x^{3}[(3\cos \theta +\cos {3\theta })/2]} = ( 2 x 3 ) [ ( 3 cos θ + cos 3 θ ) / 4 ] {\displaystyle \,=\,(2x^{3})[(3\cos \theta +\cos {3\theta })/4]} 1 = ( 2 x 3 ) ( cos 3 θ ) {\displaystyle 1\,=\,(2x^{3})(\cos ^{3}\theta )} x = 1 2 3 cos θ {\displaystyle x\,=\,{\frac {1}{{\sqrt[{3}]{2}}\cos \theta }}}