Lengths of arcs of the circle, in degrees, and the integer parts of chord lengths, were expressed in a base-10 numeral system that used 21 letters of the Greek alphabet with the meanings given in the following table, and a symbol, "∠'", that means 1/2. Two of the letters, labeled "archaic" in this table, had not been in use in the Greek language for some centuries before the Almagest was written.
α
a
l
p
h
a
1
ι
i
o
t
a
10
ϱ
r
h
o
100
β
b
e
t
a
2
κ
k
a
p
p
a
20
γ
g
a
m
m
a
3
λ
l
a
m
b
d
a
30
δ
d
e
l
t
a
4
μ
m
u
40
ε
e
p
s
i
l
o
n
5
ν
n
u
50
ϛ
s
t
i
g
m
a
(
a
r
c
h
a
i
c
)
6
ξ
x
i
60
ζ
z
e
t
a
7
o
o
m
i
c
r
o
n
70
η
e
t
a
8
π
p
i
80
ϑ
t
h
e
t
a
9
ϟ
k
o
p
p
a
(
a
r
c
h
a
i
c
)
90
{\displaystyle {\begin{array}{|rlr|rlr|rlr|}\hline \alpha &\mathrm {alpha} &1&\iota &\mathrm {iota} &10&\varrho &\mathrm {rho} &100\\\beta &\mathrm {beta} &2&\kappa &\mathrm {kappa} &20&&&\\\gamma &\mathrm {gamma} &3&\lambda &\mathrm {lambda} &30&&&\\\delta &\mathrm {delta} &4&\mu &\mathrm {mu} &40&&&\\\varepsilon &\mathrm {epsilon} &5&\nu &\mathrm {nu} &50&&&\\\mathrm {\stigma} &\mathrm {stigma\ (archaic)} &6&\xi &\mathrm {xi} &60&&&\\\zeta &\mathrm {zeta} &7&\mathrm {o} &\mathrm {omicron} &70&&&\\\eta &\mathrm {eta} &8&\pi &\mathrm {pi} &80&&&\\\vartheta &\mathrm {theta} &9&\mathrm {\koppa} &\mathrm {koppa\ (archaic)} &90&&&\\\hline \end{array}}}
Thus, for example, an arc of 143+ 1 ⁄2 ° is expressed as
ϱ
μ
γ
∠
′
{\displaystyle \varrho \mu \gamma \angle '}
.
The fractional parts of chord lengths required great accuracy, and were given in three columns in the table: the first giving an integer multiple of 1/60, in the range 0–59, the second an integer multiple of 1/602 = 1/3600, also in the range 0–59, and the third an integer multiple of 1/603 = 1/21600, again in the range 0–59.
Thus in Heiberg's edition of the Almagest with the table of chords on pages 48–63 , the beginning of the table, corresponding to arcs from 1/2° through 7+ 1 ⁄2 °, looks like this:
π
ε
ϱ
ι
φ
ε
ϱ
ε
ι
ω
~
ν
ε
ν
'
ϑ
ε
ι
ω
~
ν
ε
`
ξ
η
κ
o
σ
τ
ω
~
ν
∠
′
α
α
∠
′
β
β
∠
′
γ
γ
∠
′
δ
δ
∠
′
ε
ε
∠
′
ϛ
ϛ
∠
′
ζ
ζ
∠
′
∘
λ
α
κ
ε
α
β
ν
α
λ
δ
ι
ε
β
ε
μ
β
λ
ζ
δ
γ
η
κ
η
γ
λ
ϑ
ν
β
δ
ι
α
ι
ϛ
δ
μ
β
μ
ε
ι
δ
δ
ε
μ
ε
κ
ζ
ϛ
ι
ϛ
μ
ϑ
ϛ
μ
η
ι
α
ζ
ι
ϑ
λ
γ
ζ
ν
ν
δ
∘
α
β
ν
∘
α
β
ν
∘
α
β
ν
∘
α
β
ν
∘
α
β
μ
η
∘
α
β
μ
η
∘
α
β
μ
η
∘
α
β
μ
ζ
∘
α
β
μ
ζ
∘
α
β
μ
ϛ
∘
α
β
μ
ε
∘
α
β
μ
δ
∘
α
β
μ
γ
∘
α
β
μ
β
∘
α
β
μ
α
{\displaystyle {\begin{array}{ccc}\pi \varepsilon \varrho \iota \varphi \varepsilon \varrho \varepsilon \iota {\tilde {\omega }}\nu &\varepsilon {\overset {\text{'}}{\nu }}\vartheta \varepsilon \iota {\tilde {\omega }}\nu &{\overset {\text{`}}{\varepsilon }}\xi \eta \kappa \mathrm {o} \sigma \tau {\tilde {\omega }}\nu \\{\begin{array}{|l|}\hline \angle '\\\alpha \\\alpha \;\angle '\\\hline \beta \\\beta \;\angle '\\\gamma \\\hline \gamma \;\angle '\\\delta \\\delta \;\angle '\\\hline \varepsilon \\\varepsilon \;\angle '\\\mathrm {\stigma} \\\hline \mathrm {\stigma} \;\angle '\\\zeta \\\zeta \;\angle '\\\hline \end{array}}&{\begin{array}{|r|r|r|}\hline \circ &\lambda \alpha &\kappa \varepsilon \\\alpha &\beta &\nu \\\alpha &\lambda \delta &\iota \varepsilon \\\hline \beta &\varepsilon &\mu \\\beta &\lambda \zeta &\delta \\\gamma &\eta &\kappa \eta \\\hline \gamma &\lambda \vartheta &\nu \beta \\\delta &\iota \alpha &\iota \mathrm {\stigma} \\\delta &\mu \beta &\mu \\\hline \varepsilon &\iota \delta &\delta \\\varepsilon &\mu \varepsilon &\kappa \zeta \\\mathrm {\stigma} &\iota \mathrm {\stigma} &\mu \vartheta \\\hline \mathrm {\stigma} &\mu \eta &\iota \alpha \\\zeta &\iota \vartheta &\lambda \gamma \\\zeta &\nu &\nu \delta \\\hline \end{array}}&{\begin{array}{|r|r|r|r|}\hline \circ &\alpha &\beta &\nu \\\circ &\alpha &\beta &\nu \\\circ &\alpha &\beta &\nu \\\hline \circ &\alpha &\beta &\nu \\\circ &\alpha &\beta &\mu \eta \\\circ &\alpha &\beta &\mu \eta \\\hline \circ &\alpha &\beta &\mu \eta \\\circ &\alpha &\beta &\mu \zeta \\\circ &\alpha &\beta &\mu \zeta \\\hline \circ &\alpha &\beta &\mu \mathrm {\stigma} \\\circ &\alpha &\beta &\mu \varepsilon \\\circ &\alpha &\beta &\mu \delta \\\hline \circ &\alpha &\beta &\mu \gamma \\\circ &\alpha &\beta &\mu \beta \\\circ &\alpha &\beta &\mu \alpha \\\hline \end{array}}\end{array}}}
Later in the table, one can see the base-10 nature of the integer part of the arc. Thus an arc of 85° is written as
π
ε
{\displaystyle \pi \varepsilon }
(
π
{\displaystyle \pi }
for 80 and
ε
{\displaystyle \varepsilon }
for 5) and not broken down into 60 + 25, and the corresponding chord length of 81 plus a fractional part begins with
π
α
{\displaystyle \pi \alpha }
, likewise not broken into 60 + 1. But the fractional part, 4/60 + 15/602 , is written as
δ
{\displaystyle \delta }
, for 4, in the 1/60 column, followed by
ι
ε
{\displaystyle \iota \varepsilon }
, for 15, in the 1/602 column.
π
ε
ϱ
ι
φ
ε
ϱ
ε
ι
ω
~
ν
ε
ν
'
ϑ
ε
ι
ω
~
ν
ε
`
ξ
η
κ
o
σ
τ
ω
~
ν
π
δ
∠
′
π
ε
π
ε
∠
′
π
ϛ
π
ϛ
∠
′
π
ζ
π
μ
α
γ
π
α
δ
ι
ε
π
α
κ
ζ
κ
β
π
α
ν
κ
δ
π
β
ι
γ
ι
ϑ
π
β
λ
ϛ
ϑ
∘
∘
μ
ϛ
κ
ε
∘
∘
μ
ϛ
ι
δ
∘
∘
μ
ϛ
γ
∘
∘
μ
ε
ν
β
∘
∘
μ
ε
μ
∘
∘
μ
ε
κ
ϑ
{\displaystyle {\begin{array}{ccc}\pi \varepsilon \varrho \iota \varphi \varepsilon \varrho \varepsilon \iota {\tilde {\omega }}\nu &\varepsilon {\overset {\text{'}}{\nu }}\vartheta \varepsilon \iota {\tilde {\omega }}\nu &{\overset {\text{`}}{\varepsilon }}\xi \eta \kappa \mathrm {o} \sigma \tau {\tilde {\omega }}\nu \\{\begin{array}{|l|}\hline \pi \delta \angle '\\\pi \varepsilon \\\pi \varepsilon \angle '\\\hline \pi \mathrm {\stigma} \\\pi \mathrm {\stigma} \angle '\\\pi \zeta \\\hline \end{array}}&{\begin{array}{|r|r|r|}\hline \pi &\mu \alpha &\gamma \\\pi \alpha &\delta &\iota \varepsilon \\\pi \alpha &\kappa \zeta &\kappa \beta \\\hline \pi \alpha &\nu &\kappa \delta \\\pi \beta &\iota \gamma &\iota \vartheta \\\pi \beta &\lambda \mathrm {\stigma} &\vartheta \\\hline \end{array}}&{\begin{array}{|r|r|r|r|}\hline \circ &\circ &\mu \mathrm {\stigma} &\kappa \varepsilon \\\circ &\circ &\mu \mathrm {\stigma} &\iota \delta \\\circ &\circ &\mu \mathrm {\stigma} &\gamma \\\hline \circ &\circ &\mu \varepsilon &\nu \beta \\\circ &\circ &\mu \varepsilon &\mu \\\circ &\circ &\mu \varepsilon &\kappa \vartheta \\\hline \end{array}}\end{array}}}