User:Peter Mercator/References

From Wikipedia, the free encyclopedia
Jump to: navigation, search


  • . 201699999.  Check date values in: |date= (help); Missing or empty |title= (help)

Empty citation (help) 

  • Journal.  Missing or empty |title= (help)



OS Ramsden[edit]

(Pearson 1829) (Turner 1983) (Insley 2008) (McConnell 2007) (Ramsden 1777) (Ramsden 1779) (Ramsden the optician)

OS Roy[edit]

(Bennet 2006) (Anderson 2010) (O'Donoghue 1977) (Maskelyne) (Roy 1777) (Roy 1785) (Roy 1787) (Roy 1790)

OS History[edit]

OS MIscellaneous[edit]

(OSgrid1946) (Surveying-treatise1911) (Maskelyne 1775)



(Close 1910), Conolly (1898) de Santis 2002, list of Directors-General, (DNB 1885), (Heritage 1953), Hewitt (2010), (James 1873), (James 1902), (Leonard 2010), (Owen & Pilbeam 1992), (Seymour 1980), (Yolland 1847)

  • Close, Charles Frederick (1910). The second geodetic levelling of England and Wales, 1912—1921. London: H.M.S.O. 
  • Conolly, T. W. J. (1898). Roll of Officers of the Corps of Royal Engineers From 1660 to 1898. Chatham, Kent: Royal Engineers Institute. p. 31. 
  • de Santis, Edward (2002). "The Royal Engineers Ubique". Archived from the original on 14 December 2013. Retrieved 22 October 2014. 
  • "Directors-General of the Ordnance Survey" (PDF). Charles Close Society. Retrieved 19 December 2012. 
  • English Heritage (14 July 1953). "17-22 Carlton Crescent". The National Heritage List for England. Retrieved 1 November 2014. 
  • Hewitt, Rachel (2011). Map of a Nation: a biography of the Ordnance Survey. Granta Books. ISBN 978 1 84708 254 1. 
  • James, Henry (1873). Account of the field surveying and the preparation of the manuscript plans of the Ordnance Survey. London: HMSO. 
  • James, Henry (1902). Account of the methods and processes adopted for the production of the Ordnance Survey of the United Kingdom (second ed.). London: H.M.S.O. 
  • Lee, Sidney, ed. (1885–1900). Dictionary of National Biography. London: Smith, Elder & Co. Articles on David Dundas, William Roy and David Watson. 
  • Leonard, A. G. K. (2010). "Carlton Crescent: Southampton's most spectacular Regency development" (PDF). Southampton Local History Forum Journal (Autumn 2010). Southampton City Council. p. 42. Retrieved 1 November 2014. 
  • Owen, Tim; Pilbeam, Elaine (1992). Ordnance Survey, map makers to Britain since 1791. Southampton: Ordnance Survey (HMSO). ISBN 9780319002490. OCLC 28220563. Freely available online at the Ordnance Survew, Owen and Pilbeam 
  • Seymour, W. A., ed. (1980). A History of the Ordnance Survey. Folkestone, England: Dawson. ISBN 0-7129-0979-6. OCLC 654935343. Freely available online at the Ordnance Survey, Seymour 
  • Yolland, William (1847). An Account of the Measurement of the Lough Foyle Base in Ireland, with its verification and extension by Triangulation; together with the various methods of Computation followed on the Ordnance Survey, and the requisite Tables. Board of Ordnance. No ebook available. There is an online (highly critical) review in a book notice appearing in the Philosophical Magazine Series 3 Volume 32, Issue 215, 1848 

Clarke Biographical[edit]

Clarke Ordnance Survey publications[edit]

The following list contains the major reports prepared by Clarke, as well as his text book. The title pages of many of the reports mention only Colonel Henry James, Superintendent of the Ordnance Survey, but in every case it is made clear that Clarke was de facto author.

Clarke Other scientific papers[edit]

  • Royal Society of London (1914). Catalogue of scientific papers, 1800-1900. Cambridge University Press. Volumes 1 (p934), 7 (p395) and 9 (p526) list the following papers: 
  • Clarke, Alexander Ross (1850). "Propositions on the tetrahedron". Mathematician. 3: 182–189. 
  • Clarke, Alexander Ross (1851). "On the measurements of azimuths on a spheroid". Monthly Notices of the Royal Astronomical Society. 11: 147–147. 
  • Clarke, Alexander Ross (1858a). "Note on Archdeacon Pratt's Paper on the effect of local attraction in the English Arc". Philosophical Transactions of the Royal Society: 787–790. 
  • Clarke, Alexander Ross (1859a). "Note on the figure of the Earth". Monthly Notices of the Royal Astronomical Society. 19: 36–38. 
  • Clarke, Alexander Ross (1859b). "On the reduction of occultations". Memoirs of Royal Astronomical Society. 27: 97–110. 
  • James, Henry (1860). "Description of the Projection Used in the Topographical Department of the War Office for Maps Embracing Large Portions of the Earth's Surface". Journal of the Royal Geographical Society of London. 30: 106–111. This article appears under the name of the Superintendent James but he does acknowledge that it was actually written by Clarke. 
  • Clarke, Alexander Ross (1861). "On the figure of the Earth". Memoirs of Royal Astronomical Society. 29: 2544. 
  • Clarke, Alexander Ross (1866b). "On Archdeacon Platt's Figure of the Earth". Philosophical Magazine. 31: 193–196. 
  • Clarke, Alexander Ross (1866c). "On the figure of the earth". Philosophical Magazine. 32: 236–237. 
  • Clarke, Alexander Ross (1870a). "On a determination of the direction of the meridian with a Russian diagonal transit instrument". Memoirs of the Royal Astronomical Society. 37: 57–74. 
  • Clarke, Alexander Ross (1870b). "On the course of geodesic lines on the Earth's surface". Philosophical Magazine. 39: 352–363. 
  • Clarke, Alexander Ross (1876). "On the elasticity of brass". Philosophical Magazine. 2: 131–134. 
  • Clarke, Alexander Ross (1877a). "Just intonation". Nature. 15.Page 159,page 253,page 353. 
  • Clarke, Alexander Ross (1877b). "On a correction to observed latitudes". Philosophical Magazine. 4: 302–305. 
  • Clarke, Alexander Ross (1877c). "On the potential of an ellipsoid at an external point". Philosophical Magazine. 4: 458–61. 
  • Clarke, Alexander Ross (1878). "On the figure of the Earth". Philosophical Magazine. 6: 81–93. 

Clarke Encyclopedia articles[edit]


ADAMS 1921 [1]




BUZENGEIGER Legendre theorem on spherical triangles (to fourth order) [5]

CLARKE Geodesy [6]).

DELAMBRE meridian 1798 [7]

GAUSS Legendre theorem on spherical triangles [8]


GEOTRANS converter [10]


KARNEY transverse Mercator [12]

KRUGER transverse Mercator [13]

LAMBERT transverse Mercator [14]

LEE exact [15]

LEE series [16]

LEGENDRE 1 theorem stated not proved [17]

LEGENDRE 2 theorem proved [18]



NADENIK Legendre theorem survey [21]

NELL Legendre theorem to order 6 [22]


NIST [24]

OSBORNE (Spherical trig page 16 Legendre) [25] OSBORNE Mercator Projections [26]

OSGB [27]

PEARSON Trig textbook Legendre theorem at para41 page103 [28]

PODER [29]

RAPP [30]


SNYDER flattening [32]

SNYDER workbook [33]




TORGE [37]

TROPKFE Legendre theorem possibly in 1740 [38]

UTM [39]



WGS84 [42]

  1. ^ Adams, Oscar S (1921). Latitude Developments Connected With Geodesy and Cartography, (with tables, including a table for Lambert equal area meridional projection). Special Publication No. 67 of the US Coast and Geodetic Survey. A facsimile of this publication is available from the US National Oceanic and Atmospheric Administration (NOAA) at Warning: Adams uses the nomenclature isometric latitude for the conformal latitude of this article.
  2. ^ The Astronomical Almanac published annually by the National Almanac Office in the United States ( and the United Kingdom (
  3. ^ F. W. Bessel, 1825, ¨Uber die Berechnung der geographischen L¨angen und Breiten aus geod¨atischen Vermessungen, Astron. Nachr., 4(86), 241–254, doi:10.1002/asna.201011352, translated into English by C. F. F. Karney and R. E. Deakin as The calculation of longitude and latitude from geodesic measurements, Astron. Nachr. 331(8), 852–861 (2010), E-print arXiv:0908.1824,
  4. ^ Borre[1]
  5. ^ Buzengeiger, Karl Heribert Ignatz (1818), [[2] "Vergleichung zweier kleiner Dreiecke von gleichen Seiten, wovon das eine sphärisch, das andere eben ist"] Check |url= value (help), Zeitschrift für Astronomie und verwandte Wissenschaften (v6): 264—270  line feed character in |title= at position 88 (help)
  6. ^ Clarke, Alexander Ross (1880), Geodesy, Clarendon Press  Recently republished at Forgotten Books.
  7. ^ Delambre, Jean Baptiste Joseph (1798), [[3] Méthodes analytiques pour la détermination d’un arc du méridien] Check |url= value (help) 
  8. ^ Gauss, Karl Friedrich (1841 page=96), [[4] Elementare Ableitung eines zuerst von Legendre aufgestellten Lehrsatzes der sphärischen Trigonometrie journal=Journal für die reine und angewandte Mathematik (vol 2)] Check |url= value (help)  line feed character in |title= at position 88 (help); line feed character in |year= at position 5 (help); Check date values in: |date= (help)
  9. ^ Gauss, Karl Friedrich, 1825. "Allgemeine Auflösung der Aufgabe: die Theile einer gegebnen Fläche auf einer andern gegebnen Fläche so abzubilden, daß die Abbildung dem Abgebildeten in den kleinsten Theilen ähnlich wird" Preisarbeit der Kopenhagener Akademie 1822. Schumacher Astronomische Abhandlungen, Altona, no. 3, p. 5=30. [Reprinted, 1894, Ostwald’s Klassiker der Exakten Wissenschaften, no. 55: Leipzig, Wilhelm Engelmann, p. 57-81, with editing by Albert Wangerin, pp. 97-101. Also in Herausgegeben von der Gesellschaft der Wissenschaften zu Göttingen in Kommission bei Julius Springer in Berlin, 1929, v. 12, pp. 1-9.]
  10. ^ Geotrans, 2010, Geographic translator, version 3.0, URL
  11. ^ Hofmann-Wellenhof, B and Moritz, H (2006 and 2005). 'Physical Geodesy (second edition)' ISBN-103211-33544-7.
  12. ^ Karney, Charles F. F. (2010). Transverse Mercator with an accuracy of a few nanometers. To be published in Computational Physics. Available as a preprint [5] with resource material at [6].
  13. ^ Krüger, L. (1912). Konforme Abbildung des Erdellipsoids in der Ebene. Royal Prussian Geodetic Institute, New Series 52.
  14. ^ Lambert, Johann Heinrich. 1772. Ammerkungen und Zusatze zurder Land und Himmelscharten Entwerfung. In Beyträge zum Gebrauche der Mathematik und deren Anwendung, part 3, section 6) name=wangerin>Albert Wangerin (Editor), 1894. Ostwald's Klassiker der exacten Wissenschaften (54). Published by Wilhelm Engelmann. This is Lambert's paper with additional comments by the editor. Available at the University of Michigan Historical Math Library.
  15. ^ Lee, L.P. (1976). Conformal Projections Based on Elliptic Functions. Supplement No. 1 to Canadian Cartographer, Vol 13. (Designated as Monograph 16). Toronto: Department of Geography, York University. A report of unpublished analytic formulae involving incomplete elliptic integrals obtained by E.H. Thompson in 1945. The article may be purchased from University of Toronto[7]. At the present time (2010) it is necessary to purchase several units in order to obtain the relevant pages: pp 1-14, 92-101 and 107-114.
  16. ^ Lee L P, (1946). Survey Review, Volume 8 (Part 58), pp 142-152. The transverse Mercator projection of the spheroid. (Errata and comments in Volume 8 (Part 61), pp 277–278.NAG WGS84 on the site of National Geodetic Survey
  17. ^ Legendre, Adrien-Marie (1787), Mémoire sur les opérations trigonométriques, dont les résultats dépendent de la figure de la Terre, p. 7-8 (Article  VI[8] 
  18. ^ Legendre, Adrien-Marie (1798), [[9] Méthode pour déterminer la longueur exacte du quart du méridien d’après les observations faites pour la mesure de l’arc compris entre Dunkerque et Barcelone] Check |url= value (help), p. 12-14 (Note III[10])  This article is included in the work of Delambre.
  19. ^ Maxima, 2009, A computer algebra system, version 5.20.1, URL
  20. ^ Maling, Derek Hylton (1992), Coordinate Systems and Map Projections (second ed.), Pergamon Press, ISBN 0080372333 .
  21. ^ Nádeník, Zbyněk, [[11] Legendre theorem on spherical triangles] Check |url= value (help) (PDF) 
  22. ^ NELL (1874), Zur höherin Geodäsie, p. 324  Section A of this paper proves the Legendre theorem to the sixth order. (Page 329)
  23. ^ Isaac Newton:Principia Book III Proposition XIX Problem III, p. 407 in Andrew Motte translation, available on line at [12]
  24. ^ Olver, F. W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W., eds. (2010,), NIST Handbook of Mathematical Functions, Cambridge University Press. Format for section is Section 4.23(viii)  Check date values in: |date= (help)
  25. ^ Osborne, Peter (2013), Spherical Trigonometry, p. 16. Appendix D of The Mercator Projections (Supplement: Latex code and figures) 
  26. ^ Osborne, Peter (2013), The Mercator Projections, doi:10.5281/zenodo.35392. (Supplements: Maxima files and Latex code and figures) 
  27. ^ A guide to coordinate systems in Great Britain. This is available as a pdf document at [13]]
  28. ^ Pearson, Henry (1831), A syllabus of plane and spherical trigonometry, Cambridge.  Legendre's theorem is at Article 41, page103 [14]
  29. ^ K. E. Engsager and K. Poder, 2007, A highly accurate world wide algorithm for the transverse Mercator mapping (almost), in Proc. XXIII Intl. Cartographic Conf. (ICC2007), Moscow, p. 2.1.2.
  30. ^ Rapp, Richard H (1991), Geometric Geodesy, Part I, [15]  External link in |publisher= (help)
  31. ^ Redfearn, J C B (1948). Survey Review, Volume 9 (Part 69), pp 318-322, Transverse Mercator formulae.
  32. ^ Snyder, John P (1993), Flattening the Earth: Two Thousand Years of Map Projections, University of Chicago Press, ISBN 0-226-76747-7 
  33. ^ Snyder, John P. (1987), Map Projections – A Working Manual. U.S. Geological Survey Professional Paper 1395 (PDF), United States Government Printing Office, Washington, D.C. 
  34. ^ Stuifbergen, N 2009, Wide zone transverse Mercator projection, Technical Report 262, Canadian Hydrographic Service, URL
  35. ^ Thomas, Paul D (1952). Conformal Projections in Geodesy and Cartography. Washington: U.S. Coast and Geodetic Survey Special Publication 251.
  36. ^ Tobler, Waldo R, Notes and Comments on the Composition of Terrestrial and Celestial Maps, 1972. University of Michigan Press
  37. ^ Torge, W (2001) Geodesy (3rd edition), published by de Gruyter, isbn=3-11-017072-8
  38. ^ Tropfke, Johannes (1903), [[16] Geschichte der Elementar-Mathematik (Volume 2).] Check |url= value (help), Verlag von Veit, p. 295 
  39. ^ J. W. Hager, J.F. Behensky, and B.W. Drew, 1989, The universal grids: Universal Transverse Mercator (UTM) and Universal Polar Stereographic (UPS), Technical Report TM 8358.2, Defense Mapping Agency, URL publications/tm8358.2/TM8358 2.pdf.
  40. ^ Vincenty (PDF)
  41. ^ Albert Wangerin (Editor), 1894. Ostwald's Klassiker der exacten Wissenschaften (54). Published by Wilhelm Engelmann. This is Lambert's paper with additional comments by the editor. Available at the University of Michigan Historical Math Library.
  42. ^ The WGS84 parameters are listed in the National Geospatial-Intelligence Agency publication TR8350.2 page 3-1.